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APOS theory holds an important place in the history of research on undergraduate
mathematics education, especially in the US-based RUME community (e.g., Selden
2012). Developed in the 80s, the theory was elaborated in Dubinsky’s (1991) chapter
in the influential Advanced Mathematical Thinking text (Tall 1991), and has since
been developed and applied to various domains across many journal articles and con-
ference papers. APOS theorists were among the first to pay serious attention to how
students come to understand mathematical concepts, and to think carefully about
how this should inform pedagogic interventions. That there is now a blossoming field
of research in undergraduate mathematics education is, to a large extent, due to the
group of researchers who first worked on APOS theory. But the theory is perhaps not
as dominant as it once was, and this book is clearly intended to persuade researchers
to consider adopting an APOS-based approach. Indeed, in their preface, the authors
state that their aim is to offer a detailed account of the theory, with the goal of con-
tributing towards the education of graduate students and young mathematics educa-
tion researchers.

The ambition of the book is substantial: the authors describe APOS theory as a
Kuhnian paradigm, and set out to explain the the paradigmatic questions, assump-
tions, and methods that within-paradigm researchers adopt. Kuhn (1962) suggested
that paradigms, during normal science at least, are universally accepted within a given
discipline. The existence of theoretical rivals to APOS in the mathematics education
literature suggests that the authors’ description might not be quite correct, and that
APOS theory might be better characterised as a Lakatosian research programme. I
will suggest that, as well as being a more accurate description of APOS theory’s sta-

I am very grateful to Keith Weber for thoughtful comments on an earlier draft of this review. This work
was supported by a Royal Society Worshipful Company of Actuaries Research Fellowship.

M. Inglis
Mathematics Education Centre, Loughborough University, Loughborough. United Kingdom.
Tel.: +44-1509-228213
E-mail: m.j.inglis@lboro.ac.uk



2 Matthew Inglis

tus, Lakatos’s (1976) notion of a research programme provides a helpful structure
through which we can evaluate its contribution.

In The Methodology of Scientific Research Programmes, Lakatos (1976) sug-
gested that a research programme has several components. It has a ‘hard core’, the
key assumptions and beliefs that define the programme. Alongside the hard core is
the programme’s ‘heuristic’, a set of problem-solving techniques that researchers use
within the programme to make progress and solve problems. In addition to the hard
core and heuristic, a research programme also has a ‘protective belt’ of auxiliary
hypotheses, the goal of which is to protect the hard core from empirical anomalies.
Whenever an anomaly appears—whenever an empirical finding causes difficulties for
the current version of the theory—a ‘rescue hypothesis’ can be added to the protective
belt. In other words, the protective belt, but not the hard core, can simply be modified
to absorb the anomaly.

Lakatos distinguished between two types of research programme. A progressing
programme is one which successfully absorbs anomalies and turns them to its advan-
tage by regularly generating surprising new predictions and results. Because of its
success, we should have relatively high levels of confidence in the validity of a pro-
gressing programme’s hard core. In contrast, a degenerating programme rarely makes
novel discoveries or predictions, and dedicates its protective belt to the explanation
and accommodation of anomalies. Lakatos suggested that scientific revolutions oc-
cur when researchers give up trying to accommodate anomalies into a degenerating
research programme, and replace it by an alternative research programme that is pro-
gressing.

So which is APOS theory? A progressing research programme or a degenerating
one? I thought about this question a lot while reading the book. My conclusion is
that it’s very hard to tell. Very few, if any, Lakatosian anomalies are discussed by
the authors. This could be because there aren’t any: perhaps the research literature
contains no results that cause difficulties for the APOS hard core. But I do not think
that this is the case, and later in the review give an explicit example of an anomaly
that needs to be accommodated. An alternative possibility, which to me seems more
likely, is that the research programme has not paid sufficient attention to the wider
literature and possible anomalies it contains.

Before discussing these issues further, I briefly give an account of APOS’s hard
core and heuristic. The fundamental assumption of APOS theory is that there are
three basic types of mathematical knowledge: actions, processes and objects. Actions
are physical or mental manipulations of objects that result in other objects. For exam-
ple, if a child adds 4 to 3 to get 7 by counting on, they have performed an action. If a
learner is able to reflect upon an action in such a way that allows them to think about
it without needing to explicitly perform it, they have interiorized the action into a pro-
cess. So, a child may be able to think about the process of adding 4 without needing
to explicitly do it. Once they have interiorized the action, they will be able to reverse
it, and to skip steps. For instance if the child is able to reverse ‘add 4’ by subtracting
4, this would be evidence that they had interiorized the ‘add 4’ action. Sometimes
processes can act as objects for new actions. In this case the learner is said to have
encapsulated the process into an object. Schemas are coherent collections of the three
more basic types: actions, processes and objects that are related in some way. This
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repeating cycle of actions being interiorized into processes, which are encapsulated
into objects, which together form schemas, is what gives APOS theory its name.

One of the book’s strengths is its very clear description of APOS’s research
heuristic: the methods and approaches that researchers adopt within the programme.
Fundamental to this are so-called ‘genetic decompositions’, hypothetical models that
describe the mental actions, processes and objects that a student must develop, and the
sequence in which they must develop them, to learn a given mathematical concept.
APOS progresses by developing new genetic decompositions, testing them against
empirical data pertaining to students’ learning, and using them to design pedagogical
materials. The book gives a number of detailed examples of genetic decompositions,
and discusses the resulting pedagogical approaches.

I found the book’s discussion of APOS’s hard core and heuristic to be extremely
clear and helpful. But there were two omissions which I felt could have strengthened
it. First, APOS theory is a development of Piaget’s notion of reflective abstraction,
and this is reflected throughout the book by many favourable references to Piaget’s
research. But, although Piaget is a hugely influential scholar, his work has been heav-
ily criticised. For instance, critics say that he was concerned only with description
rather than explanation (e.g., Brainerd 1978), that many of the descriptions he gave
are simply false (e.g., Fischer 1978; Johnson-Laird and Wason 1970), and that he dra-
matically underestimated the role of social factors in intellectual development (e.g.,
Broughton 1981). Given these complaints, many of which would seem to impact upon
APOS theorists’ use of his work, it seemed strange to find here only uncritical appeals
to Piaget’s thinking. Second, APOS theory is one of several process-to-object theo-
ries that have surfaced in the mathematics education literature. Closely related ideas
are Sfard’s (1991) notion of reification, and Gray and Tall’s (1994) procept theory.
Although the book does mention these rival theories, the discussion is dismissively
limited to a single paragraph, which seemed like a missed opportunity.

I found the book’s discussion of APOS’s protective belt to be more problematic.
As noted above, Lakatos (1976) suggested that the health of a research programme
can be determined by how it deals with anomalies. If rescue hypotheses regularly
need to be added to its protective belt, it is degenerating; if anomalies are incor-
porated so that novel predictions and results are generated, it is progressing. Few
anomalies are discussed in this book, but it seems to me that there are many results
from the mathematics education and mathematical cognition literatures which pose a
challenge APOS’s hard core. I give one example here.

Is it always the case that learners come to understand processes by interiorizing
actions? APOS theory says yes, or at least that the “full development of a mathe-
matical concept necessitates” this (p. 176). But there is a body of research which
challenges this assertion, at least in the context of basic arithmetic (Gilmore and
Bryant 2006, 2008; Gilmore and Papadatou-Pastou 2009; Sherman and Bisanz 2007).
As noted above, if children come to understand the notion of addition as an object
by first interiorizing actions and then encapsulating processes, we might expect that
they would first gain increasing competence at completing addition problems (ac-
tion), and then start to reverse these actions, and to reflect on them without needing
to carry them out (process), before eventually being able to perform new actions on
the process (object).
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This account makes clear empirical predictions in the context of arithmetic inver-
sion. Take the missing value problem 14+12−�= 17. A child who is a skilled per-
former of the addition and subtraction actions would have few difficulties in solving
the problem, whereas a child who was not yet sufficiently skilled with these actions
would struggle. However, problems such as 13+�−9= 13 or 15+13−�= 15 have
two possible solution strategies. They can be solved by the fluent application of ac-
tions in much the same way as the first problem, or they can be solved by inverting the
appropriate addition or subtraction (i.e. by reversing the addition/subtraction, which
according to APOS theory requires interiorization to have taken place). If the action-
before-process account were correct, we would expect to see three types of children:
those who are unable to do well on either problem type (who have yet to develop
fluent actions), those who can solve calculation problems and inversion problems via
a calculation strategy (who have fluent actions, but who have yet to interiorize these
into processes), and those who can solve calculation problems with a calculation
strategy and inversion problems with an inversion strategy (who have successfully
interiorized their actions and so are able to think about addition/subtraction as pro-
cesses and reverse them). We certainly would not expect to find students who are able
to solve the inversion problems but not the calculation problems: such students would
have interiorized an action without being able to perform it.

However, across a number of published studies, this latter group has regularly
been identified. In their meta-analysis of 14 papers, Gilmore and Papadatou-Pastou
(2009) found that roughly a third of children (220 out of the combined sample of
745) fell into this category. That is to say that a third of children appear to have a
process conception of addition/subtraction, at least in the sense that they can reverse
additions and subtractions, without being able to reliably perform the addition and
subtraction actions. To be clear, I do not wish to suggest that this empirical finding
falsifies APOS theory, or that the theory should be abandoned. But I do wish to claim
that the finding is a clear example of a Lakatosian anomaly which APOS’s protective
belt needs to accommodate with some kind of rescue hypothesis.

A number of other well-established empirical results about mathematical devel-
opment also seem hard to account for within APOS theory. For instance, if numbers
are encapsulated processes, why do humans (and indeed animals) show numerical
distance effects during comparison tasks (e.g., Moyer and Landauer 1967) or spa-
tial/numerical associations during parity judgement tasks (e.g., Dehaene et al. 1993)?
How does APOS theory account for developmental dyscalculia (e.g. Butterworth
2004)? Why do students often use linear reasoning in situations where it is inap-
propriate (e.g., Van Dooren et al. 2008)? All of these are well-established phenomena
that a comprehensive theory of mathematical concept development ought to account
for, at least using rescue hypotheses in its protective belt, if not using its hard core.
The fact that the book does not address issues like this makes it difficult to judge the
APOS research programme according to the principles set out by Lakatos (1976).

In sum, for a reader interested in understanding APOS theory, this is an excellent
book. It lays out APOS’s theoretical assumptions and standard research methods with
clarity and precision, and it gives helpful examples of research conducted within the
programme. In Lakatos’s (1976) sense, it gives a clear explication of APOS’s hard
core and heuristic. But I think the book will be much less successful at persuading
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non-APOS theorists to join the research programme. The book doesn’t address fairly
obvious Lakatosian anomalies, and one is left with the feeling that if APOS theorists
were more engaged with the wider literature, the field would have a better sense
of whether APOS is progressing or degenerating, and therefore whether or not it
deserves wider attention.

References

Brainerd, C. (1978). The stage question in cognitive-developmental theory. Behavioural and Brain Sci-
ences, 2:173–213.

Broughton, J. (1981). Piaget’s structural developmental psychology: 4. Knowledge without a self and
without history. Human Development, 24:320–346.

Butterworth, B. (2004). Developmental dyscalculia. In Campbell, J. D., editor, Handbook of Mathematical
Cognition, pages 455–467. Psychology Press, New York.

Dehaene, S., Bossini, S., and Giraux, P. (1993). The mental representation of parity and number magnitude.
Journal of Experimental Psychology: General, 122:371–396.

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In Tall, D. O., editor,
Advanced Mathematical Thinking, pages 95–126. Kluwer, Dordrecht.

Fischer, K. (1978). Structural explanation of developmental change. Behavioural and Brain Sciences,
2:186–187.

Gilmore, C. and Bryant, P. (2008). Can children construct inverse relations in arithmetic? Evidence for in-
dividual differences in the development of conceptual understanding and computational skill. British
Journal of Developmental Psychology, 26:301–316.

Gilmore, C. and Papadatou-Pastou, M. (2009). Patterns of individual differences in conceptual understand-
ing and arithmetical skill: A meta-analysis. Mathematical Thinking and Learning, 11:25–40.

Gilmore, C. K. and Bryant, P. (2006). Individual differences in children’s understanding of inversion and
arithmetical skill. British Journal of Educational Psychology, 76:309–331.

Gray, E. M. and Tall, D. O. (1994). Duality, ambiguity and flexibility: A proceptual view of simple
arithmetic. Journal for Research in Mathematics Education, 25:115–141.

Johnson-Laird, P. N. and Wason, P. C. (1970). A theoretical analysis of insight into a reasoning task.
Cognitive Psychology, 1:134–148.

Kuhn, T. S. (1962). The Structure of Scientific Revolutions. University of Chicago Press, Chicago.
Lakatos, I. (1976). The Methodology of Scientific Research Programmes. Cambridge University Press,

Cambridge.
Moyer, R. S. and Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature,

215:1519–1520.
Selden, A. (2012). A home for RUME: The story of the formation of the Mathematical Association of

America’s Special Interest Group of Research in Mathematics Education. Technical Report 2012-6,
Tennessee Technological University, Cookeville, TN, USA.

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as
different sides of the same coin. Educational Studies in Mathematics, 22:1–36.

Sherman, J. and Bisanz, J. (2007). Evidence for use of mathematical inversion by three-year-old children.
Journal of Cognition and Development, 8:333–344.

Tall, D. O., editor (1991). Advanced Mathematical Thinking. Kluwer, Dordrecht.
Van Dooren, W., De Bock, D., Janssens, D., and Verschaffel, L. (2008). The linear imperative: An inven-

tory and conceptual analysis of students’ overuse of linearity. Journal for Research in Mathematics
Education, 39:311–342.


