
Mathema'cians’	assessments	of	the	explanatory	value	of	proofs		

Abstract.	 The	 literature	 on	 mathema.cal	 explana.on	 contains	 numerous	 examples	 of	

explanatory,	and	not	so	explanatory	proofs.	 In	this	paper	we	report	results	of	an	empirical	

study	aimed	at	inves.ga.ng	mathema.cians’	no.on	of	explanatoriness,	and	its	rela.onship	

to	 accounts	 of	 mathema.cal	 explana.on.	 Using	 a	 Compara.ve	 Judgement	 approach,	 we	

asked	 38	 mathema.cians	 to	 assess	 the	 explanatory	 value	 of	 several	 proofs	 of	 the	 same	

proposi.on.	We	 found	an	extremely	high	 level	 of	 agreement	 among	mathema.cians,	 and	

some	inconsistencies	between	their	assessments	and	claims	 in	the	 literature	regarding	the	

explanatoriness	of	certain	types	of	proofs.	
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1.	Introduc'on	

Outside	 of	 the	 philosophy	 of	 mathema.cs,	 mathema.cal	 explana.on	 is	 frequently	

interpreted	 in	a	pedagogical	sense:	mathema.cal	explana.ons	are	the	kinds	of	things	that	

someone	may	say	or	do	to	help	someone	else	grasp	a	mathema.cal	 idea.	In	philosophy	of	

mathema.cs	 this	 no.on	 is	 oSen	 more	 closely	 related	 to	 scien.fic	 explana.on,	 where	

scien.fic	 explana.ons	 are	 those	 things	 that	 account	 (or	 should	 account)	 for	 natural	

phenomena,	and	the	philosophical	study	of	scien.fic	explana.on	 is	the	characteriza.on	of	

the	 nature	 and	 structure	 of	 those	 explana.ons.	 Thus,	 just	 like	we	 can	 think	 of	 science	 as	

offering	 explana.ons	 in	 its	 answers	 to	 the	 ques.ons	 like	 “why	 does	 salt	 dissolve	 in	

water?”	 (with	 philosophers	 of	 science	 studying	 the	 nature	 of	 those	 explana.ons),	 some	

philosophers	think	of	mathema.cs	as	offering	explana.ons	in	its	accounts	of	different	types	

of	phenomena	 (with	philosophers	of	mathema.cs	studying	 the	nature	of	 those	accounts).	

Since	Steiner	(1978)	offered	a	proposal	for	what	cons.tutes	an	explanatory	proof,	the	study	

of	 mathema.cal	 explana.on	 has	 a`racted	 modest	 but	 sustained	 interest.	 In	 the	 current	

study	we	set	out	to	empirically	 inves.gate	the	no.on	of	mathema.cal	explana.on	held	by	

mathema.cians,	and	its	rela.onship	to	philosophical	accounts	of	mathema.cal	explana.on.	

Before	delving	into	the	relevant	literature,	we	specify	the	type	of	mathema.cal	explana.on	

that	cons.tutes	 the	 focus	of	our	study.	Lyon	and	Coyvan	 (2008)	wrote	 that,	depending	on	

the	nature	of	the	phenomena	being	explained,	a	mathema.cal	explana.on	is	either	extra-

mathema5cal	 (if	 the	phenomena	being	explained	 is	non-mathema.cal	 in	nature)	or	 intra-

mathema5cal	 (if	 the	explained	phenomena	 itself	 is	mathema.cal).	 Lyon	and	Coyvan	were	

par.cularly	interested	in	extra-mathema.cal	explana.ons,	those	which	help	explain	physical	

phenomena,	such	as	why	hive-bee	honeycombs	have	a	hexagonal	structure.		Here,	we	focus	

instead	 on	 intra-mathema.cal	 explana.ons,	 in	 which	 what	 is	 being	 explained	 (the	

explanans)	 and	 what	 is	 doing	 the	 explaining	 (the	 explanandum)	 are	 both	 within	

mathema.cs.	More	specifically,	we	focus	on	the	idea	that	some	mathema.cal	proofs	explain	

why	 a	given	mathema.cal	 theorem	holds,	while	others	merely	establish	 that	 the	 theorem	

holds.	 Although	our	 focus	 is	 on	 the	 explanatory	 value	of	mathema.cal	proofs,	we	do	not	

ascribe	to	the	proof-chauvinism	cri.cised	by	D’Alessandro	(2020):	the	view	that	“all	or	most	

cases	of	mathema.cal	explana.on	involve	explanatory	proofs	 in	an	essen.al	way”	(p.581).	

Like	 D’Alessandro,	 we	 believe	 that	 proofs	 do	 not	 have	 a	 monopoly	 of	 explana.on	 in	

mathema.cs.	Furthermore,	the	approach	we	take	in	this	paper	could	easily	be	extended	to	

study	non-proof	explana.ons.		



We	 begin	 by	 describing	 and	 illustra.ng	 a	 dis.nc.on	 between	 two	 categories	 into	 which	

accounts	of	mathema.cal	explana.on	fall,	a	dis.nc.on	that	was	crucial	in	the	design	of	our	

study.	We	 then	 consider	 the	 rela.onship	 between	 accounts	 of	 mathema.cal	 explana.on	

and	 mathema.cal	 prac.ces	 and	 address	 the	 mo.va.ng	 ques.on	 of	 why	 philosophers	

interested	 in	 mathema.cal	 explana.on	 should	 be	 interested	 in	 the	 results	 of	 our	

inves.ga.ons.	We	then	 review	recent	developments	 in	 the	assessment	of	 the	explanatory	

value	of	proofs,	describe	our	methodological	approach,	and	present	the	results	of	our	study.	

We	 end	 the	 paper	 by	 discussing	 our	 results	 in	 light	 of	 current	 accounts	 of	mathema.cal	

explana.on,	and	how	the	use	of	 the	method	employed	 in	this	paper	could	help	move	the	

field	forward.	

2.	Literature	review	

On'c	and	epistemic	accounts	of	explana'on	in	mathema'cs	

Based	 on	 a	 dis.nc.on	 made	 by	 Salmon	 (1984)	 in	 the	 context	 of	 scien.fic	 explana.on,	

Delarivière,	 Frans,	 and	 Van	 Kerkhove	 (2017)	 dis.nguished	 between	 on5c	 and	 epistemic	

accounts	of	what	it	means	for	a	proof	to	have	explanatory	value	in	mathema.cs:	

“An	account	of	explana.on	is	on5c	if	it	states:	

Proof	 P	 of	 theorem	 t	 has	 explanatory	 value	 if	 and	 only	 if	 P	 itself	 is	 the	 explanans	 of	 t	

regardless	of	whether	it	gives	understanding	to	any	par.cular	agent.	

An	account	of	explana.on	is	epistemic	if	it	states:	

Proof	P	of	theorem	t	has	explanatory	value	if	and	only	if	the	explanans	consists	of	arguments	

(in	the	broad	sense)	 including	P	that	grants	understanding	of	t	for	a	par.cular	agent	S.”	(p.	

311)	

Whereas	in	on.c	accounts	the	explanatory	value	of	a	proof	relies	on	the	extent	to	which	the	

proof	 possesses	 certain	 characteris.cs	 (not	 necessarily	 related	 to	 understanding),	 in	

epistemic	accounts	the	explanatory	value	of	a	proof	relies	on	the	extent	to	which	the	proof	

grants	 understanding	 to	 a	 par.cular	 agent.	 Thus,	 on.c	 accounts	 focus	 on	 specifying	 the	

kinds	of	(non-epistemic)	characteris.cs	that	increase	the	explanatory	value	of	a	proof	(e.g.,	

in	 terms	 of	 certain	 mathema.cal	 proper.es),	 whereas	 epistemic	 accounts	 focus	 on	

specifying	the	type	of	understanding	derived	from	proofs	with	higher	explanatory	value,	and	

the	 condi.ons	 under	 which	 such	 understanding	 occurs.	 Crucially,	 in	 on.c	 accounts	 it	 is	



irrelevant	(at	least	in	principle)	whether	a	proof	with	the	appropriate	characteris.cs	is	either	

understood	 or	 understandable	 by	 any	 one	 agent .	 In	 contrast,	 in	 epistemic	 accounts,	 the	1

assessment	of	the	explanatory	value	of	proofs	varies	depending	on	the	agent.	Proof	P	may	

have	high	explanatory	value	for	agent	S,	but	not	for	agent	S’.	

Steiner’s	(1978)	account	of	what	cons.tutes	an	explanatory	proof	in	mathema.cs	is	an	early	

exemplar	of	the	on.c	approach.	For	Steiner,	a	proof	is	explanatory	if	it	deduces	the	theorem	

about	 a	 mathema.cal	 object	 by	 evidently	 relying	 on	 what	 he	 calls	 the	 characterizing	

property	of	that	object:	

My	view	exploits	the	idea	that	to	explain	the	behavior	of	an	en.ty,	one	deduces	the	behavior	

from	 the	 essence	 or	 nature	 of	 the	 en.ty.	 Now	 the	 controversial	 concept	 of	 an	 essen.al	

property	of	x	(a	property	x	enjoys	in	all	possible	worlds)	is	of	no	use	in	mathema.cs,	given	

the	 usual	 assump.on	 that	 all	 truths	 of	mathema.cs	 are	 necessary.	 Instead	 of	 'essence',	 I	

shall	speak	of	'characterizing	proper.es',	by	which	I	mean	a	property	unique	to	a	given	en.ty	

or	structure	within	a	family	or	domain	of	such	en..es	or	structures.	[…]	

My	proposal	is	that	an	explanatory	proof	makes	reference	to	a	characterizing	property	of	an	

en.ty	or	structure	men.oned	in	the	theorem,	such	that	from	the	proof	it	is	evident	that	the	

result	depends	on	the	property.	It	must	be	evident,	that	is,	that	if	we	subs.tute	in	the	proof	

a	different	object	of	the	same	domain,	the	theorem	collapses;	more,	we	should	be	able	to	

see	as	we	vary	the	object	how	the	theorem	changes	in	response	(p.	143)	

Steiner	 provided	 several	 examples	 of	 proofs	mee.ng	 this	 criterion,	 including	 a	 proof	 that	

	is	irra.onal	that	appeals	to	the	number	of	powers	of	2	in	the	prime	factoriza.on	of	 	

and	 :	since	both	 	and	 	have	an	even	number	of	2s	in	their	prime	factoriza.on,	 and	

	 must	 have	 different	 prime	 factoriza.ons,	 rendering	 	 (and	 thus )	

impossible.	For	Steiner,	this	proof	(unlike	the	classic	proof	showing	it	is	impossible	to	express	

	in	lowest	terms)	is	explanatory	because	it	relies	on	the	prime	power	expansion	of	a	

number	 (a	 ‘characterizing	 property’	 of	 number)	 in	 such	 a	 way	 that	 it	 is	 evident	 how	 the	

theorem	collapses	if	we	subs.tute	the	number	2	by	any	perfect	square	number,	or	how	the	

theorem	changes	if	we	replace	2	with	another	non-perfect	square	number.	Steiner’s	account	

2 a2

2b2 a2 b2 a2

2b2 a2 = 2b2 2 =
a
b

2 =
a
b

	Delarivière	et	al.	(2017)	clarified	that	on.c	accounts	do	not	necessarily	deny	a	possible	rela.onship	between	1

explana.on	and	understanding;	on.c	accounts	simply	do	not	use	understanding	as	a	defining	criterion	of	the	
explanatory	value	of	a	proof	(p.	312).



has	received	a	lot	of	a`en.on	and	cri.cism,	which	have	mainly	illustrated	its	limita.ons	as	

an	account	of	all	explanatory	proofs	in	mathema.cs	(e.g.,	Resnik	&	Kushner,	1987;	Hafner	&	

Mancosu,	2005;	Lange,	2014).	The	crucial	point	here	is	that	Steiner’s	account	relies	on	the	

mathema.cal	proper.es	of	the	objects	in	the	theorem	and	its	proof,	it	is	not	concerned	with	

whether	 an	 agent	 who	 reads	 the	 proof	 would	 or	 could	 gain	 increased	 mathema.cal	

understanding.	In	other	words,	Steiner’s	is	an	on.c,	not	an	epistemic,	account.	

Delarivière,	 Frans,	 and	 Van	 Kerkhove’s	 (2017)	 contextual	 account,	 and	 Inglis	 and	 Mejía-

Ramos’s	(2019)	func.onal	account	are	two	examples	of	epistemic	accounts	of	mathema.cal	

explana.on.	 While	 both	 define	 mathema.cal	 explana.on	 in	 terms	 of	 an	 agent’s	

understanding,	they	differ	on	the	par.cular	kind	of	understanding	an	explanatory	proof	may	

grant,	 and	 the	 types	of	 factors	 that	mediate	 this	 understanding.	Delarivière	 et	 al.’s	 (2017)	

contextual	account	uses	an	abili.es-based	type	of	understanding	(see	also	Avigad,	2008),	in	

which	“‘Agent	S	understands	X’	corresponds	to	‘agent	S	possesses	par.cular	abili.es	related	

to	X’”	(p.	313).	This	account	focuses	on	the	background,	skills,	and	the	epistemic	interests	of	

the	 agent	 as	 the	 main	 contextual	 factors	 media.ng	 such	 understanding.	 For	 instance,	

Delarivière	 et	 al.	 illustrated	 how	 the	 examples	 of	 explanatory	 proofs	 provided	 by	 Steiner	

(1978)	could	succeed	or	fail	as	explana.ons	according	to	their	own	account.	In	Delarivière	et	

al.’s	 account,	 the	 ‘characterizing	property’	 is	no	 longer	 independent	of	an	agent:	 an	agent	

must	use	their	background	and	skills	to	iden.fy	the	property,	and	what	ul.mately	makes	it	a	

‘characterizing’	property	depends	on	the	agent’s	own	epistemic	interests.	Similarly,	making	

evident	how	the	theorem	depends	on	that	property	is	no	longer	a	job	passively	carried	out	

by	 the	proof,	but	by	an	agent	who	must	use	 their	background	and	skills	 to	study	how	the	

theorem	collapses	or	changes	when	different	objects	are	considered.	

While	 Inglis	 and	 Mejía-Ramos’s	 (2019)	 approach	 is	 compa.ble	 with	 any	 cogni.ve,	

knowledge-based	 theory	of	understanding,	 the	no.on	of	understanding	 they	 favour	 relies	

on	the	psychological	idea	of	schema.	Schemas	are	cogni.ve	structures,	stored	in	long-term	

memory,	which	help	a	person	integrate	exis.ng	knowledge	with	new	informa.on	observed	

in	the	environment.	Understanding	a	mathema.cal	object	or	phenomenon,	on	this	account,	

involves	construc.ng	a	“sufficiently	well-organized	schema”	of	that	object	or	phenomenon,	

with	a	focus	on	the	ways	in	which	human	cogni.ve	architecture	(involving	sensory,	working,	

and	 long-term	memory)	mediates	 such	 schema	 forma.on.	 According	 to	 Inglis	 and	Mejía-

Ramos	(2019),	the	reason	Steiner’s	(1978)	criteria	may	lead	to	explanatory	proofs	is	because	

the	reference	to	a	‘characterizing	property’	helps	agents	link	relevant	informa.on	in	sensory,	



working,	 and	 long-term	 memory,	 which	 ul.mately	 facilitates	 the	 encoding	 of	 new	

informa.on	 into	a	 sufficiently	well-organized	 schema	of	 the	object	or	phenomenon.	Thus,	

Steiner’s	explanatory	proof	that	the	 	is	irra.onal	would	be	explanatory	for	an	agent	(on	

account	 of	 Steiner’s	 criteria),	 because	 its	 reliance	 on	 the	 prime	 factoriza.on	 of	 numbers	

would	ul.mately	help	that	agent	form	more	comprehensive	linked	schemas	concerned	with	

irra.onal	numbers	and	 .	Clearly,	 referencing	a	 ‘characterizing	property’	 is	not	 the	only	

way	in	which	a	par.cular	proof	may	aid	this	cogni.ve	process,	which	is	how	Inglis	and	Mejía-

Ramos	(2019)	are	able	to	incorporate	other	accounts	(e.g.,	Kitcher,	1981;	Lange,	2014).		

Both	 Delarivière	 et	 al.’s	 (2017)	 and	 Inglis	 and	Mejía-Ramos’s	 (2019)	 approaches	 lead	 to	 a	

no.on	of	explanatoriness	 that	partly	depends	upon	 individual	 agents	 (as	understanding	 is	

sensi.ve	to	 individual	differences	 in	agents’	abili.es	and	knowledge),	but	also	depends	on	

factors	which	could	be	shared	by	larger	groups	of	agents	(e.g.,	common	contextual	factors	in	

Delarivière	et	al.’s	account)	and	a	cogni.ve	architecture	shared	by	all	humans	(in	the	case	of	

Inglis	and	Mejía-Ramos).	

Mathema'cal	explana'on	in	mathema'cal	prac'ces	

One	issue	that	arises	in	debates	about	mathema.cal	explana.on	concerns	the	rela.onship	

between	 the	 no.on	 of	 explana.on,	 as	 studied	 by	 philosophers	 of	 mathema.cs,	 and	

mathema.cal	 prac.ces.	 This	 rela.onship	 is	 complex	 and	 studying	 it	 involves	 addressing	

general	ques.ons	such	as:		

• To	what	extent	do	mathema.cians	describe	themselves	(or	their	mathema.cal	work)	

as	explaining	mathema.cal	phenomena?		

• To	what	extent	do	mathema.cians’	assessments	of	what	is	(more)	explanatory	agree	

with	those	of	philosophers?		

• Are	 mathema.cians	 concerned	 with	 the	 produc.on	 of	 the	 kinds	 of	 explana.on	

discussed	in	the	philosophy	of	mathema.cs	literature?	

Weber	 and	 Frans	 (2017)	 argued	 that	 the	 role	 of	 explana.on	 in	 mathema.cal	 prac.ces	

affects	 the	 philosophical	 study	 of	mathema.cal	 explana.on	 differently	 depending	 on	 the	

specific	aim	of	the	philosophical	project.	Clearly,	if	the	aim	of	the	project	is	to	describe	and	

evaluate	explanatory	prac.ces	in	mathema.cs	(what	Weber	and	Frans	called	the	analy5cal	

aim),	then	the	role	of	explana.on	in	mathema.cal	prac.ces	is	crucial.	On	the	other	hand,	if	

2
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the	 aim	 of	 the	 project	 is	 to	 develop	 an	 ideal	 of	 the	 types	 of	 explana.ons	 that	 should	be	

valued	 in	mathema.cal	prac.ces	 (which	 they	called	 the	 reflec5ve	aim),	 then	 the	 role	 that	

explana.on	actually	plays	 in	mathema.cal	 prac.ce	 seems	 to	 be	 less	 important.	However,	

Weber	and	Frans	acknowledged	that	even	when	adop.ng	the	reflec.ve	aim,	philosophers	of	

mathema.cs	should	ul.mately	want	 to	confront	 their	developed	 ideal	of	explana.on	with	

actual	mathema.cal	prac.ces.	Without	this,	 it	would	remain	unclear	how	mathema.cians'	

explanatory	prac.ces	compare	to	the	philosopher’s	ideal.	

In	 the	 literature,	 ques.ons	 about	mathema.cal	 prac.ces	 at	 large	 are	 oSen	 answered	 by	

referencing	individual	mathema.cians’	work,	views,	and	beliefs	(including	the	philosopher’s	

own	 views	 and	 beliefs),	 without	 reference	 to	 complementary	 systema.c	 analyses	 of	 the	

prac.ces	of	the	broader	popula.on	of	mathema.cians	(but	see,	e.g.,	Löwe	&	Van	Kerkhove	

2019).	 This	 has	 led	 to	 inconsistent	 claims	 in	 the	 literature	 regarding	 the	 explanatory	

prac.ces	of	mathema.cians.	For	example,	some	have	suggested	that	mathema.cians	oSen	

describe	themselves	(or	their	work)	as	explaining	mathema.cal	phenomena	(e.g.,	Hafner	&	

Mancosu,	2005;	Steiner,	1978),	while	others	believe	that	mathema.cians	rarely	do	so	(e.g.,	

Avigad,	2006;	Resnik	&	Kushner,	1987;	Zelcer,	2013).	 In	a	 recent	systema.c	analysis	of	 the	

use	of	explanatory	language	in	a	large	sample	of	research	papers	(all	papers	uploaded	to	the	

ArXiv	between	January	and	August	2009),	Mejía-Ramos	et	al.	 (2019)	found	no	evidence	of	

such	 extreme	 prevalences	 of	 explanatory	 talk	 in	 mathema.cal	 wri.ng	 (at	 least	 when	

compared	to	the	use	of	explanatory	language	in	the	wri.ng	in	other	scien.fic	fields	and	in	

day-to-day	discourse):	while	mathema.cians	do	describe	themselves	(or	their	mathema.cal	

work)	as	explaining	mathema.cs	in	their	research	papers,	they	do	so	around	half	as	oSen	as	

do	physicists	in	their	research	papers,	or	does	the	general	popula.on	in	day-to-day	English.	

The	general	 issue	mo.va.ng	 the	 study	 reported	 in	 this	 paper	 is	 the	 rela.onship	between	

mathema.cians’	assessments	of	explanatoriness	and	theories	of	mathema.cal	explana.on	

in	 the	 literature.	 To	make	progress	 on	 this	 general	 issue,	we	need	methods	 to	 inves.gate	

mathema.cians’	 assessments	 of	 explanatoriness	 at	 scale.	 In	 this	 paper,	 we	 focus	 on	

introducing	 compara.ve	 judgements	 as	 a	 method	 that	 allows	 one	 to	 measure	

mathema.cians’	assessments	of	the	explanatory	value	of	proofs.	However,	this	method	can	

be	 easily	 adapted	 to	 inves.gate	 other	 types	 of	 mathema.cal	 explana.ons	 (e.g.,	 the	

explanatory	value	of	defini.ons,	diagrams,	theorems	and	so	on).	We	suggest	that	the	ability	

to	measure	the	perceived	explanatoriness	of	mathema.cal	proofs	could	be	useful	both	for	



those	who	adopt	an	analy.cal	aim	and	those	who	adopt	a	reflec.ve	aim,	and	we	return	to	

this	issue	later	in	the	paper.	

Assessing	the	explanatory	value	of	a	proof	

To	our	 knowledge,	 Inglis	 and	Aberdein	 (2015)	were	 the	first	 researchers	 to	 collect	 a	 large	

dataset	of	mathema.cians’	assessments	of	 the	explanatory	value	of	proofs.	 In	 their	 study,	

they	asked	255	mathema.cians	to	think	of	a	proof	that	they	had	read	recently	and	to	rate,	

on	a	five-point	Likert	scale	(from	very	inaccurate	to	very	accurate),	how	well	each	one	of	80	

adjec.ves	(including	‘explanatory’)	described	it.	They	then	conducted	an	exploratory	factor	

analysis,	 a	 sta.s.cal	method	 that	 uses	 the	 strength	 of	 the	 correla.on	 between	 observed	

variables	(in	this	case	the	ra.ngs	of	the	80	adjec.ves)	to	model	their	variability	in	terms	of	a	

lower	 number	 of	 unobserved	 variables	 (called	 factors).	 Inglis	 and	 Aberdein	 se`led	 on	 a	

model	 with	 five	 factors,	 which	 they	 termed	 Aesthe5cs,	 Non-Use,	 Intricacy,	 U5lity,	 and	

Precision.	 For	 instance,	 the	 factor	 termed	 Aesthe5cs	 captured	 high	 correla.ons	 between	

mathema.cians’	 ra.ngs	 for	 24	 of	 the	 adjec.ves,	 including	 ‘striking’,	 ‘ingenious’,	 ‘inspired’,	

‘profound’,	and	‘crea.ve’.		

Inglis	and	Aberdein	(2015)	found	that	‘explanatory’	had	moderately	posi.ve	loadings	on	the	

U5lity	and	Precision	 factors,	and	 a	moderately	 nega.ve	 loading	 on	 the	 Intricacy	 factor.	 In	

other	 words,	 proofs	 were	 likely	 to	 be	 rated	 as	 explanatory	 if	 they	 were	 seen	 as	 useful,	

precise	 and	 non-intricate.	 In	 a	 subsequent	 study,	 Inglis	 and	 Aberdein	 (2016)	 inves.gated	

mathema.cians’	 levels	 of	 agreement	 on	 these	 kinds	 of	 judgements	 by	 asking	 112	

mathema.cians	to	rate	the	same	proof	using	a	reduced	instrument	with	only	20	adjec.ves	

(four	per	 factor).	They	found	no	evidence	of	a	high	 level	of	agreement	 in	mathema.cians’	

ra.ngs	 and	 hypothesized	 that	 there	 could	 be	 large	 individual	 differences	 in	 how	

mathema.cians	evaluate	proofs,	including	with	respect	to	their	explanatory	value	(although	

‘explanatory’	was	not	itself	included	in	the	reduced	set	of	20	adjec.ves).	The	findings	of	the	

study	presented	in	this	paper	challenges	this	hypothesis.	

While	 Inglis	 and	 Aberdein’s	 (2015,	 2016)	 approach	 provides	 some	 informa.on	 about	

mathema.cians’	 assessments	 of	 the	 explanatory	 value	 of	 proofs	 (and	 a	 hypothesis	 about	

their	 level	 of	 agreement	 on	 these	 assessments),	 their	 method	 was	 not	 designed	 to	

inves.gate	this	par.cular	type	of	assessment.	Using	a	five-point	scale	to	rate	how	accurately	

the	 adjec.ve	 ‘explanatory’	 describes	 a	 given	 proof,	 and	 modelling	 mathema.cians’	

appraisals	 of	 explanatoriness	 as	 a	 linear	 combina.on	 of	more	 general	 factors	 provides	 us	



with	only	a	rough	approxima.on	of	mathema.cians’	assessments	of	the	explanatory	value	

of	proofs.	We	will	return	to	this	point	in	the	Discussion	sec.on.		

If	 there	 are	 disagreements	 between	 different	 mathema.cians’	 assessments	 of	 the	

explanatory	value	of	the	same	proof,	there	are	at	least	two	different	explana.ons.	They	may	

represent	 a	 disagreement	 about	 the	 appropriate	 answer	 to	 a	 ques.on	 which	 has	 been	

interpreted	 in	 roughly	 the	same	manner	by	everyone.	However,	 such	disagreements	could	

also	 be	 the	 product	 of	 different	 interpreta.ons	 of	 the	 same	 ques.on.	 For	 example,	 if	we	

simply	 asked	 mathema.cians	 “is	 proof	 P	 explanatory?”,	 disagreements	 could	 certainly	

emerge	 from	 mathema.cians	 who	 interpret	 the	 ques.on	 as	 “does	 P	 have	 mathema.cal	

property	 E	 that	 makes	 it	 inherently	 explanatory?”	 (consistent	 with	 an	 on.c	 account	 of	

mathema.cal	 explana.on),	 and	 those	who	 interpret	 it	 as	 “would	P	 grant	 agent	 S	 type	 of	

understanding	 U?”	 (consistent	 with	 an	 epistemic	 account	 of	 mathema.cal	 explana.on).	

Clearly,	even	among	mathema.cians	who	interpret	the	ques.on	in	the	epistemic	sense,	we	

could	 s.ll	 have	 disagreements	 based	 on	 the	 specific	 agent	 and	 the	 specific	 type	 of	

understanding	considered	by	individual	mathema.cians.		

In	 the	 current	 study,	 we	wanted	 to	 clarify	 to	mathema.cians	 the	 kind	 of	 assessment	we	

were	 interested	 in	 (i.e.,	 narrowing	 down	 the	 no.on	of	 explana.on	of	 interest).	We	 asked	

mathema.cians	 to	 conduct	 paired	 comparisons	 of	 purported	 explana.ons	 of	 the	 same	

theorem,	 with	 each	 comparison	 asking	 them	 to	 select	 the	 best	 explana.on.	 With	 the	

inten.on	of	guiding	mathema.cians	to	 interpret	the	explanatory	value	of	a	proof	 in	a	way	

that	was	consistent	with	on.c	accounts	of	mathema.cal	explana.on,	we	instructed	them	to	

focus	their	assessments	on	how	well	the	proofs	themselves	accounted	for	why	the	theorem	

holds,	 without	 regard	 to	 whether	 those	 proofs	 would	 provide	 understanding	 to	 any	

par.cular	agent.	We	now	discuss	our	method	in	detail.	

3.	Method	

Approach	

Rather	than	asking	mathema.cians	to	judge	the	explanatoriness	of	individual	explana.ons,	

we	adopted	a	compara.ve	judgement	approach.	Compara.ve	Judgement	(CJ)	approaches	to	

understanding	 human	 judgement	 exploit	 the	 finding	 that	 people	 are	 be`er	 at	 comparing	

two	 objects	 against	 each	 other	 than	 at	 evalua.ng	 one	 object	 against	 specific	 criteria	

(Thurstone,	 1927).	 For	 example,	 people	 are	 more	 consistent	 when	 judging	 whether	 one	



room	 is	 ho`er	 than	 another,	 than	 when	 judging	 the	 temperature	 of	 a	 single	 object	 in	

degrees	Celsius.	Thurstone	(1927)	harnessed	this	finding	to	assign	temperatures	to	objects,	

based	on	par.cipants’	pairwise	judgements	of	which	object	was	ho`er.	He	also	adopted	the	

same	 technique	 to	 construct	 scales	 for	 other	 physical	 phenomena,	 such	 as	 weight.	

Subsequently,	 and	most	 importantly	 for	our	purposes,	Thurstone	applied	CJ	 techniques	 to	

construct	scales	of	subjec.ve	phenomena	such	as	social	axtudes	(Thurstone,	1954).	

The	CJ	approach	relies	upon	the	Bradley-Terry	model	(Bradley	&	Terry,	1952),	which	assumes	

that	 each	explana.on	 	has	 a	parameter	 	which	 captures	 its	 explanatoriness.	Given	 two	

explana.ons,	 	and	 ,	then	the	probability	that	 	is	judged	to	be	more	explanatory	than	 	is	

given	by	 .	By	recording	the	results	of	repeated	paired	comparisons,	

empirical	 es.mates	 of	 	 and	 	 can	 be	 obtained.	 Jones,	 Bisson,	 Gilmore	 &	 Inglis	 (2019)	

suggested	that,	 in	their	experience,	an	average	of	10	judgements	per	item	(explana.ons	in	

this	case)	usually	suffices	to	provide	a	reliable	es.mate	of	the	 s.	

CJ	 methods	 have	 since	 been	 applied	 to	 measurement	 in	 a	 variety	 of	 contexts,	 notably	

educa.on.	 For	 example,	 CJ	 has	 been	 used	 to	 assess	 the	 quality	 of	 students’	 essays	

(Heldsinger	&	Humphry,	2013)	and	laboratory	reports	(McMahon	&	Jones,	2015).	It	has	also	

been	applied	 in	mathema.cs,	 to	assess	 students’	understanding	of	 calculus,	 sta.s.cs,	and	

algebra	(Bisson,	Gilmore,	Inglis	&	Jones,	2016;	Jones	et	al.,	2019)	and	their	problem-solving	

skills	(Jones	&	Inglis,	2015).	CJ	methods	have	even	been	successfully	used	to	assess	nebulous	

constructs	 such	 as	 who	 is	 “the	 be`er	 mathema.cian”,	 as	 part	 of	 a	 project	 to	 track	

examina.on	 standards	 across	 .me	 (Jones,	 Wheadon,	 Humphries	 &	 Inglis,	 2016).	 The	

commonality	across	such	studies	is	using	CJ	to	assess	constructs	–	such	as	explanatoriness	–	

about	which	experts	are	expected	to	have	an	 intui.ve	understanding,	but	which	they	may	

not	be	able	to	fully	ar.culate,	or	use	to	make	reliable	absolute	judgements	(Polli`,	2012).		

One	strength	of	CJ	is	that	it	permits	empirical	inves.ga.on	of	the	extent	to	which	the	judges	

agree	 about	 the	 construct	 they	 are	 asked	 to	 judge.	 For	 instance,	 if	 teachers	 are	 asked	 to	

repeatedly	select	which	of	two	students	is	“the	be`er	mathema.cian”	on	the	basis	of	their	

wri`en	work,	we	can	quan.fy	the	extent	to	which	they	agree	with	each	other	by	calcula.ng	

an	appropriate	 reliability	coefficient.	Such	a	coefficient	 represents	 the	extent	 to	which	 the	

judges	agree	about	what	cons.tutes	a	good	mathema.cian.	
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Following	 a	 CJ	 approach,	 we	 asked	 research-ac.ve	 mathema.cians	 to	 select	 the	 best	

explana.on	in	a	series	of	pairs	of	mathema.cal	explana.ons	of	the	same	statement,	while	

interpre.ng	 the	 explanatory	 value	 of	 a	 proof	 in	 a	 way	 that	 was	 consistent	 with	 on.c	

accounts	 of	 mathema.cal	 explana.on.	 Our	 primary	 goal	 was	 to	 inves.gate	 whether	 our	

par.cipants’	 judgements	 cohered	with	 each	 other’s.	 Our	 secondary	 goal	 was	 to	 begin	 to	

explore	 the	 rela.onship	 between	mathema.cians’	 assessments	 of	 what	 is	 explanatory	 in	

mathema.cs	and	the	corresponding	assessments	made	by	philosophers	in	the	literature.	

Materials	

The	nine	proofs	we	used	in	the	study	were	all	taken	from	Ording’s	(2019)	99	Varia5ons	on	a	

Proof	of	the	proposi.on:	

Proposi5on.	Let	 .	If	 ,	then	 	or	 .	

The	 full	 set	of	 explana.ons,	 typeset	 as	 seen	by	par.cipants	 is	 given	 in	 the	Appendix,	 and	

summarized	in	Table	1.		

x ∈ ℝ x3 − 6x2 + 11x − 6 = 2x − 2 x = 1 x = 4

Explana'on	Name Explana'on	Descrip'on

One-line	

(p.	3)

A	one-line	argument	which	asserts	the	factorisa.on	of	the	

equa.on’s	standard	form.

Two-column	

(p.	5)

A	two-column	proof	which	reorganises	the	equa.on	into	standard	

form,	then	solves	it.

Elementary	

(p.	9)

A	narra.ve	version	of	the	same	underlying	argument	as	presented	

in	the	two-column	proof.

Visual	

(p.	23)

A	visual	‘proof’	which	deforms	a	cube	of	side	length	x	into	a	

cuboid	with	volume	equal	to	the	equa.on	in	standard	form,	and	

with	the	side	lengths	equal	to	x	-	1,	x	-	1	and	x	-	4.	

Contradic.on	

(p.	29)

Verifica.on	that	x	=	1	and	x	=	4	are	solu.ons,	followed	by	a	

demonstra.on	that	the	existence	of	a	third	solu.on	would	imply	

that	1	=	0.

Contraposi.ve	

(p.	31)

A	demonstra.on	that	if	x	were	neither	1	nor	4,	then	the	LHS	of	the	

equa.on	would	not	equal	the	RHS.

Subs.tu.on	

(p.	49)

An	argument	which	subs.tutes	x	=	y	+	1	into	the	standard	form	of	

the	equa.on	and	shows	that	y	must	be	0	or	3.	



Table	1:	A	descrip.on	of	each	of	the	explana.ons	used	in	the	study.	Full	versions	are	given	in	

the	Appendix.	Note	that	neither	the	explana.ons’	names	nor	descrip.ons	were	presented	to	

par.cipants.	Page	references	are	to	Ording’s	(2019)	99	Varia5ons	on	a	Proof.	

In	 the	 selec.on	 of	 these	 nine	 proofs	 we	 wanted	 to	 end	 up	 with	 a	 diverse	 set	 of	 proofs	

containing	 some	 of	 the	 types	 of	 proofs	 that	 had	 been	 discussed	 in	 the	 mathema.cs	

explana.on	 literature.	 This	was	done	 to	address	our	 secondary,	more	exploratory	goal:	 to	

illustrate	 the	 rela.onship	between	mathema.cians’	assessments	of	what	 is	explanatory	 in	

mathema.cs	and	the	corresponding	assessments	made	by	philosophers	in	the	literature.	

• The	 ‘Elementary’	 and	 ‘Two-column’	 proofs,	 shown	 in	 Figure	 1,	 were	 of	 par.cular	

importance	to	explore	whether	mathema.cians	are	 influenced	by	epistemic	factors	

when	asked	to	judge	on.c	explanatoriness.	We	considered	these	two	explana.ons	to	

be	mathema.cally	 equivalent	 in	 the	 sense	 that	 they	 both	 reorganized	 the	 original	

equa.on	into	the	standard	form	 ,	then	split	9x	into	5x	+	4x,	

which	permi`ed	the	equa.on	to	be	factorized	as	 	

and	 then	 .	 Importantly,	 the	only	 difference	between	 the	

two	explana.ons	was	 the	 level	of	detail	provided	 (substan.ally	higher	 in	 the	 ‘Two-

column’	proof).	If	mathema.cians	were	eschewing	all	epistemic	considera.ons	when	

judging	the	on.c	explanatoriness	of	these	explana.ons,	we	would	therefore	expect	

that	these	two	explana.ons	would	be	judged	to	be	similarly	explanatory.	

• The	 ‘One-line’,	 ‘Subs.tu.on’,	and	 ‘Taylor	series’	proofs	were	chosen	as	 three	direct	

proofs	of	different	length,	and	with	varying	degrees	of	complexity	and	generality	of	

approach.	

• The	 ‘Visual’	 and	 ‘Experimental’	 explana.ons	both	have	debatable	 status	 as	 proofs.	

Furthermore,	 some	 have	 observed	 that	 visual	 proofs	 are	 oSen	 seen	 as	 being	

explanatory	(e.g.,	Hanna,	2000;	Steiner,	1978)	and	the	no.on	of	an	explanatory	proof	

Taylor	series	

(p.	75)

Uses	the	Taylor	series	expansion	of	the	func.on	represented	by	

the	equa.on’s	standard	form	and	shows	the	roots	must	be	1	or	4.

Experimental		

(p.	183)

Employs	Newton’s	method	with	a	computer	algebra	system	to	

show	that	the	equa.on	has	roots	very	near	if	not	equal	to	1	and	4.

a x3 + bx2 + cx + d = 0

(x2 − 5x)(x − 1) + 4(x − 1) = 0

(x2 − 5x + 4)(x − 1) = 0



is	commonly	illustrated	with	visual	proofs	in	the	literature	(most	oSen	with	examples	

in	Euclidean	geometry,	but	also	with	dot-diagrams	in	elementary	number	theory).	

• The	‘Contradic.on’	and	‘Contraposi.ve’	proofs	were	chosen	as	examples	of	indirect	

proofs.	Tradi.onally,	proofs	by	contradic.on	have	been	discussed	in	the	literature	as	

being	 generally	 non-explanatory	 (Lange,	 2016,	 and	 Mancosu,	 2018,	 offer	 some	

historical	 examples).	 However,	 some	 authors	 have	 offered	 examples	 of	 proofs	 by	

contradic.on	 that	 they	 deemed	 to	 be	 explanatory	 (Steiner,	 1978;	 Colyvan,	 2012;	

Hanna,	2018).	

Figure	1.	The	‘Two-column’	and	‘Elementary’	explana.ons	as	presented	to	mathema.cians.	

Procedure	and	Par'cipants	

Par.cipants	 were	 recruited	 by	 email.	 Once	 they	 had	 read	 informa.on	 about	 the	 study	

contained	 in	 the	 invita.on	email,	 if	 they	wished	 to	par.cipate	 then	 they	visited	a	website	

which	explained	the	purpose	of	 the	study	and	asked	them	to	state	their	 research	area,	by	

selec.ng	which	category	of	the	Mathema.cs	Subject	Classifica.on	most	of	their	research	fell	

into.	They	then	read	detailed	instruc.ons	about	the	study:	

Two-Column Elementary



Our	 aim	 is	 to	 study	 mathema.cians'	 sense	 of	 what	 makes	 a	 good	 explana.on	 in	

mathema.cs.	 To	 this	 end	 we	 will	 ask	 you	 to	 conduct	 a	 series	 of	 paired	 comparisons	 of	

mathema.cal	explana.ons.	In	each	comparison	you	will	be	asked	to	read	two	explana.ons	

of	a	given	proposi.on	in	mathema.cs	and	to	choose	the	one	which	you	think	best	explains	

why	 the	proposi.on	holds.	 […]	All	 arguments	 you	will	 read	 in	 this	 study	 come	 from	Philip	

Ording’s	book	“99	Varia.ons	on	a	Proof”.	In	each	paired	comparison,	we	want	you	to	think	

about	which	argument	best	explains	why	the	proposi9on	holds,	and	not	to	focus	on	how	it	

might	be	received	by	a	par9cular	audience.	(Emphasis	in	the	original.)	

Our	inten.on	with	these	instruc.ons	was	to	prompt	par.cipants	to	focus	on	the	explanatory	

value	of	a	proof	in	a	way	that	was	consistent	with	on.c,	rather	than	epistemic	accounts	of	

mathema.cal	 explana.on.	 The	 instruc.ons	 also	 explained	 how	 the	 paired	 comparison	

process	worked,	and	asked	par.cipants	to	complete	a	total	of	twenty	judgements.	

Once	 par.cipants	 had	 read	 the	 instruc.ons,	 they	 clicked	 through	 to	 the	 first	 paired	

comparison	which	was	presented	on	the	No	More	Marking	pla}orm .	Par.cipants	saw	two	2

explana.ons	 side-by-side	 and	 were	 asked	 to	 click	 “leS”	 or	 “right”	 based	 on	 which	 they	

thought	 was	 the	 be`er	 explana.on	 of	 why	 the	 proposi.on	 holds.	 Once	 par.cipants	 had	

made	their	selec.on,	another	two	explana.ons	were	presented.	Each	pairing	was	selected	

randomly	from	the	set	of	possible	pairs	(the	order	of	explana.ons	in	each	pairing	was	also	

randomized).	ASer	par.cipants	had	completed	twenty	judgements,	their	par.cipa.on	in	the	

study	finished.	

Our	data	 collec.on	proceeded	 in	 two	stages.	Par.cipants	 in	 the	first	 stage	were	 research-

ac.ve	mathema.cians	affiliated	with	 the	Department	of	Mathema.cs	at	 the	University	of	

Auckland.	We	con.nued	recrui.ng	par.cipants	un.l	we	had	collected	a	complete	dataset,	

which	consisted	of	twenty	comparisons	from	each	of	16	mathema.cians.	ASer	analysing	the	

data	from	the	first	stage	we	decided	to	a`empt	to	replicate	the	study	in	a	new	context,	and	

so	a`empted	to	recruit	16	further	mathema.cians,	this	.me	affiliated	with	the	Department	

of	Mathema.cs	at	Rutgers	University.	Although	we	planned	to	collect	data	from	16	Rutgers-

based	mathema.cians,	we	had	already	obtained	22	complete	datasets	before	we	were	able	

to	stop	data	collec.on.	Thus,	the	final	sample	consisted	of	a	total	of	38	mathema.cians	and	

760	 judgements,	meaning	that	we	had	an	average	of	84	 judgements	per	explana.on,	well	

above	Jones	et	al.’s	(2019)	recommenda.on	of	10.		

	www.nomoremarking.com2



The	par.cipants	researched	a	wide	range	of	mathema.cal	topics,	the	most	common	being	

combinatorics	 (N	 =	 4),	 par.al	 differen.al	 equa.ons	 (N	 =	 4),	 K-theory	 (N	 =	 3),	 and	 group	

theory	(N	=	3).		

4.	Results	

The	paired	comparison	data	were	fi`ed	to	the	Bradley-Terry	model	(Bradley	&	Terry,	1952;	

Hunter,	2004)	using	the	sirt	package	 in	R. 	The	Bradley-Terry	model	used	the	set	of	paired	3

comparison	 judgements	 to	produce	es.mates	of	 the	 	 ‘explanatoriness’	of	each	proof.	This	

was	 captured	 with	 a	 quality	 parameter	 and	 associated	 standard	 error	 (a	 measure	 of	 the	

precision	with	which	the	parameter	was	es.mated).	These	parameters	were	used	to	explore	

the	mathema.cians’	judgements	further.	

Mathema'cians’	agreement		

To	 address	 our	 main	 ques.on	 –	 do	 mathema.cians	 agree	 about	 the	 criteria	 that	 make	

explana.ons	 explanatory?	 –	we	 used	 an	 inter-rater	 reliability	 coefficient	 based	 on	 Bisson,	

Gilmore,	 Inglis	 and	 Jones’s	 (2016)	 split-half	 technique.	 Specifically,	 we	 randomly	 split	 the	

group	of	Auckland	judges	into	two	equal	subgroups	(each	with	eight	par.cipants),	used	the	

Bradley-Terry	model	to	produce	parameter	es.mates	separately	from	the	judgements	from	

each	group,	and	then	correlated	the	resul.ng	parameter	values.	We	repeated	this	process	

1000	.mes	 (with	a	new	random	split	 in	each	case)	and	calculated	 the	average	correla.on	

coefficient	 across	 the	 1000	 itera.ons.	 If	 this	 so-called	 split-half	 inter-rater	 reliability	

coefficient	 were	 close	 to	 1,	 it	 would	 indicate	 that	 the	 mathema.cians	 in	 our	 sample	

completely	 agreed	 with	 each	 other	 about	 which	 explana.ons	 were	 most	 explanatory.	

However,	 if	 the	 coefficient	 was	 close	 to	 zero,	 then	 this	 would	 indicate	 that	 the	

mathema.cians	had	completely	different	concep.ons	of	explanatoriness.		

In	the	Auckland	sample	the	split-half	inter-rater	reliability	coefficient	was	very	high,	at	.882,	

indica.ng	 that	 the	mathema.cians	 largely	 had	 a	 shared	 conceptualisa.on	 of	 explana.on.	

We	repeated	this	analysis	in	the	Rutgers	sample,	finding	that	the	parameter	values	derived	

from	the	Rutgers	par.cipants	correlated	very	highly	with	those	derived	from	the	Auckland	

par.cipants,	r	=	.909.	The	results	from	the	two	samples	are	shown	in	Figure	2.	To	ensure	that	

the	reliability	coefficient	in	the	Rutgers	sample	was	comparable	to	the	Auckland	sample,	we	

	Data	and	code	are	available	at	h`ps://figshare.com/s/4a392b9f73156ff64d30.3



used	randomly	created	groups	of	the	same	size	(i.e.,	8	par.cipants)	to	calculate	the	split-half	

inter-rater	reliability	coefficient.	This	yielded	a	value	of	.910.	

	
Figure	2.	Rela.onship	of	parameters	obtained	from	the	Auckland	and	Rutgers	samples	(the	

largest	disagreement	was	the	‘Subs.tu.on’	proof).	Error	bars	show	±	1	SE	of	the	mean.	

Given	 that	 the	 results	 derived	 from	 the	 Auckland	 and	 Rutgers	 samples	 were	 extremely	

similar,	we	refi`ed	the	Bradley-Terry	model	to	the	combined	set	of	 judgements.	This	again	

yielded	 an	 extremely	 high	 split-half	 inter-rater	 reliability	 coefficient	 of	 .947.	 Finally,	 given	

that	 previous	 research	 on	 mathema.cians’	 evalua.ons	 of	 proofs	 had	 found	 differences	

between	pure	and	applied	mathema.cians	(e.g.,	Inglis	et	al.,	2013;	Inglis	&	Aberdein,	2020),	

we	 first	 used	 our	 par.cipants’	 area	 of	 research	 (as	 self-reported	 using	 the	 Mathema.cs	

Subject	 Classifica.on)	 to	 classify	 them	 as	 either	 pure	 or	 applied	mathema.cians,	 and	we	

then	 fi`ed	 the	 Bradley-Terry	 model	 to	 each	 one	 of	 these	 two	 groups.	 The	 reliability	

coefficient	 for	 both	 groups	 was	 very	 high	 (.929	 for	 pure	 and	 .803	 for	 applied	

mathema.cians),	as	was	the	correla.on	between	the	two	groups'	parameters	(r	=	.957).	In	

sum,	 the	 research	mathema.cians	 in	 our	 sample	 tended	 to	 agree	with	 each	 other	 about	

which	of	the	proofs	best	explained	why	the	proposi.on	holds.	



Exploratory	results	

To	 address	 our	 second	 goal	 –	 to	 explore	 the	 rela.onship	 between	 mathema.cians’	

assessments	 of	 what	 is	 explanatory	 in	 mathema.cs	 and	 the	 corresponding	 assessments	

made	by	philosophers	in	the	literature	–	we	explored	the	parameters	associated	with	each	

of	 the	 proofs.	 These	 parameters	 are	 shown	 in	 Figure	 3.	 Note	 that	 these	 values	 are	 only	

meaningful	in	rela.on	to	each	other	(they	are	on	an	arbitrary	scale)	but	that,	nevertheless,	

the	 numbers	 are	 interpretable	 as	 a	 scale	 (i.e.,	 the	 gap	 in	 explanatoriness	 between	

explana.ons	with	parameters	0	and	0.5	is	the	same	as	the	gap	between	explana.ons	with	

parameters	0.5	and	1).		

	
Figure	3.	Perceived	explanatoriness	of	each	explana.on	(Auckland	and	Rutgers	samples	

combined).	Error	bars	show	±	1	SE	of	the	mean.	

Below	we	briefly	summarize	the	explana.on	parameters	by	their	selec.on	criteria:		

• The	 ‘Elementary’	and	 ‘Two-column’	proofs:	The	 ‘Elementary’	proof	was	deemed	to	

be	most	explanatory	by	the	mathema.cians	in	the	study.	Cri.cally,	the	‘Elementary’	

and	 ‘Two-column’	 explana.ons	 had	 substan.ally	 different	 parameters,	 1.52	 and	

-0.18	respec.vely.	In	other	words,	despite	the	two	proofs	presen.ng	what	we	see	as	

being	the	same	underlying	mathema.cal	argument,	our	par.cipants	perceived	them	

to	 have	 very	 different	 explanatory	 values.	 Given	 this	 result,	 and	 despite	 the	 clear	



experimental	 instruc.ons,	 it	 seems	unlikely	 that	our	par.cipants‘	 judgements	were	

solely	influenced	by	on.c	explanatoriness.	We	return	to	this	issue	in	the	Discussion.	

• The	 ‘One-line’,	 ‘Subs.tu.on’,	 and	 ‘Taylor	 series’	 proofs:	 With	 parameters	 of	 1.23,	

1.01	 and	 -0.252,	 respec.vely,	 these	 three	 direct	 proofs	 had	 substan.ally	 different	

parameters.	 In	 par.cular,	 the	 extremely	 brief	 ‘One-line’	 proof	 was	 deemed	 the	

second	most	explanatory	by	the	mathema.cians.	

• The	 ‘Visual’	 and	 ‘Experimental’	 proofs:	 With	 parameters	 of	 -1.97	 and	 -2.70	

respec.vely,	 these	 two	 proofs	 were	 deemed	 the	 least	 explanatory	 by	 the	

mathema.cians	in	the	study.	

• The	‘Contradic.on’	and	‘Contraposi.ve’	proofs:	 	With	parameters	of	0.78	and	0.56,	

respec.vely,	 the	perceived	 levels	of	these	 indirect	proofs	were	perhaps	surprisingly	

high	given	sugges.ons	in	the	literature	that	indirect	proofs	are	rarely	explanatory.		

5.	Discussion	

We	see	the	main	contribu.on	of	this	paper	to	be	methodological.	We	have	successfully	used	

the	Compara.ve	Judgement	(CJ)	approach	to	measure	mathema.cians’	no.on	of	the	on.c	

explanatory	 value	 of	 nine	 proofs.	 This	 success	 is	 partly	 manifested	 in	 the	 high-level	 of	

agreement	between	mathema.cians	regarding	which	of	the	proofs	best	explained	why	the	

given	proposi.on	holds.	While	 it	 remains	unclear	 the	extent	 to	which	mathema.cians	can	

ar.culate	this	no.on	(or	use	it	to	make	absolute	judgements),	or	where	it	comes	from	(e.g.,	

whether	 these	 judgements	 are	 the	 product	 of	 encultura.on,	 as	 internalized	 norms	 and	

values	 of	 mathema.cal	 prac.ces),	 we	 believe	 that	 theories	 of	 mathema.cal	 explana.on	

must	be	able	to	account	for	mathema.cians’	judgements	of	explanatoriness	of	the	type	we	

have	recorded.	

One	possible	challenge	to	the	claimed	success	of	this	approach	is	that	the	explana.ons	we	

used	were	 extremely	 simple.	We	note	 that	 the	mathema.cian	Ording	 (2019)	 called	 these	

explana.ons	 proofs,	 and	 that	 these	 proofs	 are	 not	 much	 simpler	 than	 the	 kind	 of	 toy	

examples	 commonly	 used	 in	 the	 literature	 to	 illustrate	 the	 no.on	 of	 explanatory	 proof.	

However,	 we	 agree	 that	 the	 CJ	method	 should	 be	 tested	with	more	 complex	 results	 and	

proofs.	 On	 the	 other	 hand,	 the	 fact	 that	 mathema.cians	 displayed	 such	 high	 level	 of	

agreement	when	making	these	compara.ve	judgements	about	the	explanatoriness	of	these	

simple	proofs,	could	present	a	challenge	to	the	following	predic.on	by	Lange	(2014):	



My	proposal	predicts	 that	 if	 the	result	exhibits	no	noteworthy	feature,	 then	to	demand	an	

explana.on	 of	 why	 it	 holds,	 not	 merely	 a	 proof	 that	 it	 holds,	 makes	 no	 sense.	 There	 is	

nothing	that	its	explana.on	over	and	above	its	proof	would	amount	to	un.l	some	feature	of	

the	result	becomes	salient.		

This	predic.on	is	borne	out.	For	example,	there	is	nothing	that	it	would	be	for	some	proof	to	

explain	 why,	 not	 merely	 to	 prove	 that,	 .	 Nothing	 about	 this	

equa.on	calls	for	explana.on.	(p.	507)	

It	 is	unclear	whether	our	par.cipants	would	have	been	able	to	make	absolute	 judgements	

about	the	explanatoriness	of	these	simple	proofs	(i.e.,	to	decide	that	any	of	these	individual	

proofs	explained	the	given	proposi.on),	or	whether	Lange	(2014)	would	see	anything	worth	

explaining	 in	 the	 proposi.on	we	 used,	 but	 our	 results	 suggest	 that	mathema.cians	were	

able	to	make	sense	of	our	instruc.on	to	compare	which	of	our	simple	proofs	best	explained	

why	that	proposi.on	holds.	

Another	challenge	could	come	from	the	comparison	of	our	findings	with	those	of	Inglis	and	

Aberdein	(2016):	while	we	found	mathema.cians	in	our	sample	tended	to	agree	with	each	

other	about	the	explanatory	value	of	these	nine	proofs,	Inglis	and	Aberdein	found	evidence	

against	 a	 high	 level	 of	 agreement	 in	 mathema.cians’	 more	 general	 proof	 appraisal,	

hypothesizing	 that	 there	 could	 be	 large	 individual	 differences	 in	 how	 mathema.cians	

evaluate	proofs	 (including	with	 respect	 to	 their	explanatory	value).	As	suggested	earlier	 in	

the	paper,	we	believe	these	discrepancies	are	mainly	due	to	differences	 in	methodological	

approach:	 Inglis	 and	 Aberdein’s	 dimension	 reduc.on	 approach	 (which	 approximates	

mathema.cians’	 judgements	 of	 explanatoriness	 through	 Likert-scale	 ra.ngs	 of	 other	

adjec.ves	that	load	onto	factors	with	known	correla.on	coefficients	with	‘explanatoriness’)	

is	not	as	well	suited	for	the	study	of	mathema.cians’	judgements	with	respect	to	individual	

criteria	as	our	more	direct	CJ	approach.	We	hypothesize	that	the	CJ	approach	will	in	general	

be	 a	 be`er	 approach	 to	 study	 mathema.cians’	 proof	 appraisals	 with	 respect	 to	 specific	

criteria.	For	instance,	Inglis	and	Aberdein	found	that	mathema.cians	tend	to	disagree	about	

the	 aesthe.c	 quality	 of	 proofs	 when	 asked	 to	 make	 absolute	 judgements	 about	 a	 single	

proof	 in	 isola.on.	 Future	 research	 could	 produc.vely	 test	whether	mathema.cians	 agree	

about	mathema.cal	aesthe.cs	in	rela.ve	terms,	using	a	similar	CJ	method	as	deployed	here.	

∫
3
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Finally,	the	high	level	of	agreement	in	mathema.cians’	judgments	of	explanatoriness	would	

seem	to	pose	a	challenge	for	epistemic	accounts	of	mathema.cal	explana.on,	par.cularly	

for	 philosophers	 studying	 explana.on	with	 an	 analy.cal	 aim:	 if	 the	 proposal	 is	 to	 use	 an	

epistemic	 account	 of	 mathema.cal	 explana.on	 to	 describe	 explanatory	 prac.ces	 in	

mathema.cs	one	would	have	to	jus.fy	how	the	lack	of	specifica.on	of	an	agent	could	lead	

to	similar	judgements	from	different	mathema.cians.	However,	this	challenge	can	be	easily	

addressed:	 we	 would	 expect	 very	 few	 individual	 differences	 in	 mathema.cians’	

understanding	 of	 polynomials	 and	 their	 views	 of	 the	 ‘generic	 student’	 which	 they	 may	

(despite	our	 instruc.ons)	be	considering	when	evalua.ng	these	explana.ons	epistemically.	

In	 this	 sense,	 an	 epistemic	 account	 would	 predict	 a	 lower	 level	 of	 agreement	 in	

mathema.cians’	assessment	of	the	explanatoriness	of	more	complex	proofs,	or	of	proofs	in	

more	specialized	topics.	This	is	a	hypothesis	that	could	be	tested	in	future	research.	

With	respect	to	our	more	exploratory	results,	 it	 is	worth	no.ng	that	each	of	 the	following	

observa.ons	requires	its	own	study	(or	sequence	of	studies).	This	is	partly	because	claims	of	

the	form	“Mathema.cians	find	X	(non)	explanatory”,	or	“Mathema.cians	find	X	to	be	more	

explanatory	 that	 Y”,	 where	 X	 and	 Y	 represent	 large	 categories	 of	 proofs,	 clearly	 require	

tes.ng	that	goes	beyond	the	use	of	single	instances	of	X	and	Y.	Nevertheless,	we	believe	the	

following	exploratory	results	cons.tute	promising	avenues	for	future	research.	

Despite	explicitly	asking	mathema.cians	to	focus	on	the	proofs	themselves	(and	not	on	how	

they	might	 be	 received	by	 a	 par.cular	 audience),	 the	 perceived	 explanatory	 value	of	 two	

proofs	 presen.ng	 the	 same	 underlying	 argument	 (‘Elementary’	 and	 ‘Two-column’)	 was	

substan.ally	 different.	 Given	 that	 these	 parameters	 were	 obtained	 from	 all	 paired	

comparisons	made	by	mathema.cians	(not	a	single	comparison	of	these	two	proofs),	these	

substan.ally	 different	 assessments	 cannot	 be	 explained	 by	 claiming	 that	 mathema.cians	

could	 have	 been	 forced	 to	 consider	 other	 factors	 when	 shown	 two	 proofs	 that	 they	

considered	to	be	equally	explanatory.	Thus,	even	when	guiding	mathema.cians	to	interpret	

the	 explanatory	 value	 of	 a	 proof	 in	 a	 way	 that	 was	 consistent	 with	 on.c	 accounts	 of	

mathema.cal	 explana.on,	 they	 seem	 to	 have	 considered	 factors	 other	 than	 the	

mathema.cal	reasons	offered	by	the	proofs	for	why	the	proposi.on	holds.		

The	 challenge	 for	 an	 on.c	 account	 is	 to	 produce	 some	 characteris.c	 of	 the	 ‘Elementary’	

proof	(other	than	its	underlying	mathema.cal	argument)	that	 is	not	only	missing	from	the	

‘Two-column’	 proof	 but	 can	 also	 be	 disassociated	 (at	 least	 in	 principle)	 from	 an	 agent’s	



understanding.	On	 the	other	hand,	while	we	do	not	have	data	on	 the	specific	 factors	 that	

played	 a	 role	 in	 mathema.cians’	 assessments	 of	 the	 explanatory	 value	 of	 these	 proofs,	

those	 factors	 could	be	 related	 to	how	easy	 it	 is	 to	understand	 them.	We	suspect	 that	 the	

extra	 level	 of	 detail	 contained	 in	 the	 ‘Two-column’	 explana.on	 was	 perceived	 to	 be	

excessive,	and	 that	 this	would	cons.tute	an	obstacle	 to	gaining	understanding	 for	 readers	

with	an	undergraduate	(or	higher)	level	of	mathema.cal	knowledge.	This	belief	is	supported	

by	the	educa.onal	psychology	literature.	A	level	of	instruc.onal	guidance	that	is	suitable	for	

low-knowledge	 learners	 has	 been	 found	 to	 be	 disrup.ve	 for	 high-knowledge	 learners,	 a	

result	known	as	the	‘exper.se-reversal	effect’	(Kalyuga,	2007).	This	also	suggests	that	certain	

types	of	gaps	in	proofs	(Fallis,	2003;	Andersen,	2020)	could	increase	the	explanatory	value	of	

a	proof	in	mathema.cal	prac.ces.	Future	research	could	test	this	hypothesis.	

Finally,	 in	 contrast	 to	 claims	 made	 in	 the	 literature	 regarding	 the	 explanatory	 value	 of	

different	types	of	proofs,	mathema.cians	in	our	study	did	not	seem	to	judge	visual	proofs	as	

par.cularly	explanatory,	or	proofs	by	contradic.on	as	par.cularly	non-explanatory.	 Indeed,	

the	 fact	 that	our	proof	by	contradic.on	was	deemed	to	be	substan.ally	more	explanatory	

than	our	visual	proof	(with	more	standard,	direct	proofs	being	rated	somewhere	in	between)	

provides	 an	 interes.ng	 counterexample	 to	 general	 claims	 about	 the	 explanatory	 value	 of	

these	two	types	of	proof	(at	least	with	respect	to	their	descrip.on	of	explanatory	prac.ces	

of	 mathema.cians).	 The	 CJ	 method	 could	 be	 used	 to	 inves.gate	 mathema.cians’	

judgements	of	the	explanatoriness	in	more	controversial	cases,	such	as	proofs	by	induc.on,	

which	 have	 been	 described	 in	 the	 literature	 as	 being	 both	 generally	 explanatory	 (e.g.,	

Brown,	1999),	and	generally	not	explanatory	(Lange,	2009).	Moreover,	this	method	could	be	

used	 to	 inves.gate	 the	 factors	 that	 influence	 mathema.cians’	 judgements	 of	 the	

explanatoriness	of	these	different	types	of	proofs.	
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