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Mathematics educators have been publishing their work in international research journals for 

nearly 5 decades. How has the field developed over this period? We analyzed the full text of 

all articles published in Educational Studies in Mathematics and the Journal for Research in 

Mathematics Education since their foundation. Using Lakatos’s (1978) notion of a research 

programme, we focus on the field’s changing theoretical orientations and pay particular 

attention to the relative prominence of the experimental psychology, constructivist, and 

sociocultural programmes. We quantitatively assess the extent of the “social turn,” observe that 

the field is currently experiencing a period of theoretical diversity, and identify and discuss the 

“experimental cliff,” a period during which experimental investigations migrated away from 

mathematics education journals. 
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Research on mathematical thinking and learning has a long history, but it is reasonable 

to suggest that the field of mathematics education research started a new phase in 1968. It was 

in this year that Educational Studies in Mathematics (ESM) published its first issue, and 2 years 

later, in 1970, the Journal for Research in Mathematics Education (JRME) followed suit 

(Kilpatrick, 1992). Accepting 1968 as a starting date for the modern research field implies that 

mathematics educators have been publishing research in international journals for nearly half 

a century. How has the field changed during this period? Our goal in this article is to answer 

this question by reporting a study in which we analyzed the full text of all articles published 

by ESM and JRME since their founding. This approach allowed us to identify the main 

theories, methods, and domains that mathematics education researchers have focused on over 

the last 5 decades and how their relative prominence has changed during this period. 

Unsurprisingly, there have been several earlier characterizations of the development of 

mathematics education as a research field. For example, Hanna and Sidoli (2002) celebrated 

the fiftieth volume of ESM by conducting a statistical analysis of the keywords assigned to 

ESM articles in the ERIC bibliometric database. They found that the research community’s 

interest in geometry and space had declined since the 1970s and that its interest in problem 

solving peaked during the 1980s. Using internal ESM data used to assign reviewers to papers, 

Hanna and Sidoli also established that there had been a growth in the number of papers that 

focused on social issues in the teaching and learning of mathematics. This finding echoed 

Lerman, Xu, and Tsatsaroni’s (2002) more detailed analysis of papers published during the 

1990s. Lerman et al. analyzed a sample of papers published in ESM from 1990 to 2001 and 

found a substantial increase in the proportion that used social theories. In the first half of the 

decade, social approaches were present in 9% of papers, compared to 34% in the second half. 

Tsatsaroni, Lerman, and Xu (2003) later extended this analysis to papers published in JRME 

and the Proceedings of the International Group for the Psychology of Mathematics Education 

(PME), finding similar results. It was this dataset that led Lerman (2000) to claim that during 

the 1990s, there had been a “social turn in mathematics education research.” He argued that 

the decade had seen a shift in focus from the cognitive to the social: from theories that focus 

on individuals’ thought processes to “theories that see meaning, thinking, and reasoning as 

products of social activity” (p. 23). 
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Lerman’s (2000) description of the social turn proved extremely influential. Wagner 

(2015) argued that, by giving the social turn a name, Lerman described the phenomenon but 

also helped shape it. One sign of Lerman’s influence is that other researchers have adopted his 

language to advocate for other changes in the discipline. For instance, Gutiérrez (2013) 

suggested that mathematics education should make a “sociopolitical turn” and include a greater 

focus on issues of social justice and equity. However, unlike Lerman and the social turn, 

Gutiérrez was not claiming that mathematics education research had already gone through a 

sociopolitical turn but rather adopting Lerman’s language to argue that it should. 

Despite the significance of Lerman’s characterization of the social turn, some have 

questioned whether it continued through the 2000s. For example, based on their personal 

impressions of presentations at PME conferences, Gates and Jorgensen (2015) maintained that 

the social turn is absent from much of the mathematics education research literature. Similarly, 

Jablonka and Bergsten (2010) hypothesized that the trend Lerman identified may not have 

continued beyond the period he studied. Quantitatively assessing the extent of the social turn 

is one goal of the study reported in this article. 

Alongside Lerman et al.’s (2002) and Hanna and Sidoli’s (2002) contributions, there 

have been numerous other attempts to empirically map shifts in mathematics education 

research (e.g., Sierpinska & Kilpatrick, 1998). Largely, these have focused on particular topics 

such as gender, class, and race (Chassapis, 2002; Lubienski & Bowen, 2000); particular 

theories (e.g., Pais & Valero, 2012); or particular geographical regions (e.g., Boero & Szendrei, 

1998; Lai & Loo, 1992; Schoenfeld, 2016). These papers have typically analyzed database 

keywords (e.g., Chassapis, 2002; Lubienski & Bowen, 2000), reported interviews with leading 

researchers (e.g., Kieran, 1994), given personal introspective accounts of their impressions of 

changes in the field (e.g., Wilson, 1994), or offered historical accounts (e.g., Kilpatrick, 1992, 

2014). 

Here we offer a broader analysis of changes in mathematics education research over 

the past 5 decades. Rather than focusing on particular topics, time periods, or geographical 

areas, we analyzed the full text of all articles published in ESM and JRME since their inception 

5 decades ago. Using this inclusive approach, we were able to identify the key topics that 

mathematics education researchers have focused on since 1968 and track how these have 

changed over time. Before presenting our method and results, we first situate our work using 

Lakatos’s (1978) methodology of scientific research programmes. 
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Theory Change: The Methodology of Scientific Research Programmes 

How do academic disciplines make progress? Philosophers of science have proposed a 

variety of accounts, including Popper’s (1959) theory of progress through falsification and 

Kuhn’s (1962) suggestion that progress occurs through periods of normal science being 

punctuated by rapid paradigm shifts. Here we situate our work theoretically using Lakatos’s 

(1978) notion of a scientific research programme,1 which can be seen as a modification of 

Kuhn’s account (Larvor, 1998). Whereas Kuhn felt that different research approaches—

paradigms, in his language—were incommensurate, Lakatos (1978) argued that this view 

implied that there are no rational methods by which one can choose between different 

paradigms and, therefore, that scientific progress was “a matter for mob psychology” (p. 91). 

He saw his methodology of scientific research programmes as being a means by which to 

maintain Popper’s belief that science is a rational process while retaining Kuhn’s much greater 

fidelity to history (Larvor, 1998). 

The main idea in Lakatos’s (1978) account is that the base descriptive unit of research 

is not, as Popper (1959) argued, an individual research hypothesis, or even an individual theory, 

but rather a research programme. Such a programme is, in Lakatos’s sense, a historically 

connected series of theories that all share the same “hard core”; a collection of key assumptions 

and beliefs accepted by those who work within the programme. For instance, the hard core of 

the Newtonian research programme included the notion of gravitational action at a distance, 

together with Newton’s laws of motion. The hard core is the programme’s defining 

characteristic: It must be defended against falsification because if the hard core were to be 

modified, the programme itself would have been abandoned. 

Research programmes often encounter difficulties in the form of anomalous empirical 

observations. Indeed, Lakatos (1978) said that programmes “grow in a permanent ocean of 

anomalies” (p. 6). He proposed that they deal with these in one of two ways. Often, anomalies 

are simply ignored: If the programme is successfully achieving its goals, researchers may 

simply treat anomalies as open questions to be dealt with later. Alternatively, the programme 

may use what Lakatos called a “protective belt.” This consists of a large collection of auxiliary 

hypotheses that supplement the hard core and that can be used to prevent it being falsified. The 

protective belt, unlike the hard core, can be modified or abandoned without doing serious 

damage to the programme. When some empirical anomaly—a potential challenge to the 

                                                 

1 As is traditional when discussing Lakatos’s work, we use the British spelling of programme. 
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programme’s hard core—is observed, a modification is made to the protective belt. This allows 

the hard core to survive intact and the programme to continue. To illustrate this idea, Lakatos 

gave the example of a scientist observing a planet moving in a fashion inconsistent with 

Newton’s laws. Rather than abandoning the hard core of the Newtonian research programme, 

the scientist would examine hypotheses from the protective belt, perhaps by changing his or 

her assumptions about atmospheric refraction or even by proposing an as-yet-unobserved 

planet (Linton, 2004). What the scientist certainly would not do is abandon their beliefs in the 

hard core. 

The third component of a research programme is its “heuristic,” the collection of 

methods and problem-solving techniques that researchers within the programme use to make 

progress. For instance, the Newtonian research programme’s heuristic involved modeling 

empirical observations and making predictions using a set of sophisticated mathematical 

techniques. The heuristic is tied to the programme, and it is not always straightforward to 

separate a programme’s hard core from its heuristic. Indeed, Lakatos (1978) suggested that this 

distinction could in some cases merely be “a matter of convention” (p. 181). For example, the 

measurement of response times is an important part of the heuristic of the cognitive psychology 

research programme, but this is because of assumptions from the programme’s hard core (the 

temporal nature of information processing). 

Using the notions of the hard core, protective belt, and heuristic, Lakatos (1978) 

attempted to explain scientific progress and theory change by considering a discipline as a 

collection of competing programmes. He distinguished between two types of research 

programme. “Progressing” programmes are those that regularly generate surprising new results 

and research directions. Such programmes may be so successful that they can legitimately 

ignore anomalies, or they may deal with them by modifying their protective belts in such a way 

that their heuristics are able to use the modifications to productively generate more new results. 

In contrast, a “degenerating” programme rarely makes novel discoveries or predictions and 

dedicates its protective belt to the post hoc accommodation of anomalous observations. Lakatos 

suggested that research programmes are abandoned when researchers give up trying to 

accommodate anomalies into a degenerating research programme and instead join a rival 

programme that is progressing. 

In our discussion, we talk, as did Lakatos, about “science” and “scientific” research 

programmes. However, it is clear that Lakatos intended his ideas to apply to disciplines beyond 

the hard sciences. Indeed, he used his account to analyze the weaknesses of both Marxism and 
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Freudianism (Lakatos, 1978), and others have applied his ideas to educational and 

psychological research (e.g., Dienes, 2008; Gilbert & Swift, 1985; Inglis, 2015; Taber, 2007). 

Research programmes can be considered at different levels. Indeed Lakatos (1978) 

pointed out that “even science as a whole can be regarded as a huge research programme with 

Popper’s supreme heuristic rule: ‘devise conjectures which have more empirical content than 

their predecessors’” (Lakatos, 1978, p. 47). However, more commonly, an academic discipline 

is seen as consisting of several rival research programmes that compete for researchers’ 

attention by attempting to demonstrate that they are progressing (Gillies, 2007; Larvor, 1998). 

It is this latter use to which we put Lakatos’s notion in this article. Although Lakatos 

emphasized the role of competition between theories, he intended this to be a constructive form 

of competition in which each programme is spurred to progress as a result of challenges from 

rival programmes. Indeed, Lakatos even suggested that individual researchers could work 

within more than one research programme in order to expedite this process (Lakatos, 1978, p. 

112). 

Lakatos (1978) argued for the accuracy of his way of thinking about scientific progress 

by analyzing episodes from history (e.g., Niels Bohr’s work on light emission). His method 

was to produce what he called “rational reconstructions” of how ideas developed, with 

historical details and the biographies of those involved relegated to footnotes (Larvor, 1998). 

The aim of such a reconstruction is to provide “a rational explanation of the growth of objective 

knowledge,” not to offer a detailed historical account (Lakatos, 1970, p. 91). We note that some 

aspects of Lakatos’s methodology of scientific research programmes have been criticized, 

primarily by Feyerabend (1981, 1993), and towards the end of the article, we argue that these 

criticisms are not relevant to our use of Lakatos’s work. 

Our goal in the next section is to demonstrate that Lakatos’s ideas provide a helpful 

structure within which to understand the development of mathematics education research. To 

this end, we offer a rational reconstruction of the “social turn” identified by Lerman (2000). 

 

The “Social Turn” in Mathematics Education: A Rational Reconstruction 

Our goal in this section is to offer a sketch of how existing accounts of the social turn 

in mathematics education research (e.g., Clements & Ellerton, 1996; Lerman, 2000; Lerman, 

Xu, & Tsatsaroni, 2002; Mousley, 2015; Sakonidis, 2015) can be reinterpreted in terms of 

Lakatos’s (1978) methodology of scientific research programmes. To this end, we offer a brief 

rational reconstruction of the social turn. We begin in the 1980s, a period during which 
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constructivism was the dominant research programme in mathematics education. We first 

describe its hard core, heuristic, and protective belt. 

The constructivist research programme in mathematics education developed out of 

Piaget’s (1952) work on child development. Key assumptions that made up the hard core were 

that knowledge construction is an individual process designed to maximize one’s ability to 

make sense of the world. Individuals receive sensory input, filter it, and then actively organize 

it into mental schemas. Learning takes place when learners construct new knowledge by 

creating new schemas or reorganizing existing schemas. Knowledge is not passively received; 

it is actively created by the individual (e.g., Cobb, Yackel, & Wood, 1988; von Glasersfeld, 

1990; Noddings, 1990; Thompson, 2015). 

The constructivist heuristic also originated in Piaget’s (1952) work. It emphasized 

careful study of how students make sense of new mathematical ideas, typically using clinical 

interviews in which participants were asked to orally reflect on their thought processes (e.g., 

Ginsburg, 1981; Swanson, Schwartz, Ginsburg, & Rossan, 1981). As befitted the programme’s 

emphasis on individuals’ constructions of personal schemas, clinical interviews were almost 

always conducted with a single participant, who was typically observed making sense of a 

previously unseen open-ended mathematical task. 

Various flavors of constructivism were developed, including von Glasersfeld’s (1990) 

brand of radical constructivism. Radical constructivists were comfortable with the 

programme’s hard core and its focus on individual sense making but went further by 

emphasizing that the goal of constructing schemas is merely to organize the individual’s 

experience of the world and not to discover an objective external reality (e.g. von Glasersfeld, 

1991). One way of interpreting these additional assumptions of radical constructivism is to see 

them as part of constructivism’s protective belt. By adopting the radical position advocated by 

von Glasersfeld, a constructivist mathematics educator could avoid conflicts with the new 

fallibilist philosophies of mathematics that had been interpreted as denying the existence of 

objective mathematical knowledge (e.g., Davis & Hersh, 1980; Kitcher, 1983; Lakatos, 1976). 

However, the radical perspective was not part of the constructivist hard core. One could be 

what von Glasersfeld (1990) called a “trivial constructivist” and still happily endorse the 

constructivist hard core and heuristic. 

By the end of the 1980s, the radical version of the constructivist research programme 

was dominant in mathematics education (Davis, 1990), but its emphasis on individual 

knowledge construction had difficulty in accounting for several findings that seemed to suggest 

that learning had an important social component. For example, Lave (1988) found that adults’ 
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arithmetic strategies seemed to be contingent upon the social setting in which they were 

performed. She found that although adults appeared to make few arithmetic errors when 

shopping for groceries, they performed relatively poorly on paper-and-pencil tests of arithmetic 

(but see Greiffenhagen & Sharrock, 2008). Similarly, Carraher (1988) found that children 

performed quite differently when conducting mathematics in school and “in the street.” Further 

evidence that mathematical thinking was contingent upon social factors came from 

Walkerdine’s (1988, 1989) finding that negative attitudes towards, and lower attainment in, 

mathematics seemed to be more common in socially disadvantaged children and girls. These, 

and other similar, observations can be seen as a challenging anomaly to the constructivist 

research programme. How could the programme, for which the hard core and heuristic 

emphasized individual activity, deal with research findings that appeared to show that 

mathematical thinking and learning could not be fully understood without considering social 

contexts? 

The notion of social constructivism (Ernest, 1991) that, following Vygotsky (1978), 

emphasized the role of social settings, history, and culture in forming individual knowledge 

can be seen as a rescue hypothesis that was added to constructivism’s protective belt to defend 

the programme against anomalies of the sort reported by Lave (1988), Carraher (1988), and 

Walkerdine (1988, 1989). Indeed, Mousley (2015) described social constructivism as “a 

compromise position” (p. 154) designed to explain “how the notion of individual cognition 

could remain viable in the context of social group interaction” (pp. 154–155). Although the 

role of social interaction in learning was emphasized by social constructivists, using constructs 

such as taken-as-shared knowledge, the construction of knowledge was still a fundamentally 

individual pursuit. The constructivist hard core remained. 

As discussed earlier, Lakatos (1978) saw the addition of the rescue hypotheses as being 

a route through which we are able to judge whether a programme is progressing or 

degenerating. What did the social constructivist rescue hypothesis reveal about the 

constructivist programme? Opinions differed. Drawing on wider debates within the social 

sciences (for a review, see Bruner, 1996), Lerman (1996) argued that it created an internal 

contradiction. In Lakatos’s terms, he was suggesting that constructivism was a degenerating 

programme. His point was simple. If knowledge was constructed by individuals through an 

idiosyncratic internal process, how could knowledge become shared—and known to be 

shared—within social groups? In other words, how could constructivism, with its focus on 

individual knowledge, explain intersubjectivity? He directly critiqued the social constructivist 

rescue hypothesis: “I suggest that the extension of radical constructivism toward a social 
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constructivism, in an attempt to incorporate intersubjectivity, leads to an incoherent theory of 

learning” (p. 133). Lerman was arguing that the rescue hypothesis was incompatible with the 

constructivist hard core and that the research programme was degenerating to such an extent 

that it should be discarded: “mathematics education would benefit from abandoning 

constructivism as a view of how people learn” (p. 133). 

As well as arguing that the constructivist programme should be abandoned, Lerman 

(1996) also discussed the research programme that he felt should replace it. Although 

constructivism’s hard core emphasized that knowledge is constructed by individuals, the 

sociocultural research programme supported by Lerman instead had a hard core that assumed 

that thinking, reasoning, and knowledge were all products of social activity. Vygotsky (1986) 

characterized the distinction: “In our conception, the true direction of the development of 

thinking is not from the individual to the social, but from the social to the individual” 

(Vygotsky, 1986, p. 36). Clearly, this difference in the hard core also led to a substantially 

different heuristic. If thinking is constituted in social interactions, then the individual clinical 

interview is not likely to be a suitable way to study thinking. Instead, the sociocultural research 

programme’s heuristic included a much greater emphasis on observations of classroom 

discourse (e.g., Goos, Galbraith, & Renshaw, 2002). 

As Lakatos would have predicted, Lerman’s (1996) argument was rejected by those 

who wished to defend the constructivist research programme (e.g., Steffe & Thompson, 2000), 

and they continued to conduct and publish constructivist research that was widely read (e.g., 

Steffe & Ulrich, 2014; Thompson, 2014). However, when Lerman (2000) claimed that there 

had been “a social turn in mathematics education research,” he was asserting that the 

sociocultural research programme was growing—in terms of the number of researchers and its 

influence—at the expense of the constructivist research programme. As discussed above, 

Lerman based this claim on analyzing a sample of research papers from the 1990s (Lerman et 

al., 2002). The extent to which the social turn continued through the 2000s is a matter of debate 

(e.g., Gates & Jorgensen, 2015; Jablonka & Bergsten, 2010). 

 

Topic Modeling as a Method 

The social turn is an example of theory change in which a research programme was 

apparently abandoned by a subset of its followers. However, Lakatos’s notion of a research 

programme indicates that there are other ways in which programmes can develop. For instance, 

their domain of applicability might shift (the content being studied could change), or they might 

modify their heuristic (the main methods that they use could develop). To fully understand how 
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the discipline of mathematics education has changed since ESM and JRME began publishing, 

we require a method that allows developments in the hard core, heuristic, and domain content 

to be identified. In this section, we introduce topic modeling, a method that allows such 

developments to be identified through the analysis of the language used in research papers. 

The rationale for our use of a linguistic approach is that a research programme’s hard 

core, its heuristic, and the domain content it is used to analyze, all have characteristic linguistic 

features. For instance, we would expect a research paper that reports a constructivist analysis 

of geometry learning to contain words such as triangle, circle, and angle but also words such 

as schema, constructivism, and interaction. 

Topic modeling is a computational method designed to summarize large collections of 

texts by a small number of conceptually connected topics or themes (Blei, Ng, & Jordan, 2003; 

Grimmer & Stewart, 2013). The aim is to discover the main themes that are present in a large 

unstructured collection of documents by analyzing the patterns with which words co-occur. 

One way of understanding topic modeling is to imagine how documents could be created from 

a pre-existing set of topics. A topic is defined by a probability distribution over words. So, in 

one topic, the word angle would have a high weighting, and in another, it would have a low 

weighting, and similarly for schema, triangle, and so on. We can imagine creating a document 

by selecting a distribution over topics. For instance, a given document might be composed of 

40% of words from Topic 1, 15% from Topic 2, 0% from Topic 3, and so on. Given this set 

up, documents of a given length can be created simply by selecting words from the topics with 

the appropriate frequency. For instance, every time a word is selected for our document, there 

would be a 40% chance of it coming from Topic 1, and within Topic 1 there would be some 

chance of it being angle, some chance of it being triangle, and so on. This method uses the so-

called “bag of words” model of text, which dramatically simplifies language by ignoring both 

word order and “stop words” (words such as the and a that are topic independent). 

Topic modeling can be thought of as carrying out this text construction process in 

reverse. The method starts with the documents, assumes that they were constructed via this 

process, and identifies which topics would be most likely to have produced them. Topic 

modeling is a computationally demanding task that relies upon latent Dirichlet allocation 

algorithms that identify the topics that best fit the documents (Blei et al., 2003). The method is 

somewhat analogous to a quantitative version of grounded theory; there are no preconceived 

ideas about the topics that will emerge, and individual words are tagged with codes that identify 

the topics with which they are associated. Once the modeling process has occurred, we can 
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study the composition of each document. For instance, we may discover that Document 10 is 

made up of 4% of Topic 1, 60% of Topic 2, and so on. 

One difficulty with the topic modeling approach is that one must specify in advance the 

number of topics the algorithm should find. By so doing, the researcher can determine the 

granularity of the analysis. One method to decide upon a suitable number of topics is to assess 

how well the topic model fits the texts, using a measure known as perplexity. The lower the 

perplexity of a model with a given number of topics, the better the model’s fit (Blei et al., 

2003). Perplexity is calculated by fitting a topic model to a subset of the texts and then assessing 

its fit on the remaining texts. This process is repeated for models with different numbers of 

topics. It is always possible to reduce the perplexity of a topic model by increasing the number 

of topics, but at some point, the gain in fit will be offset by the increased difficulty of 

interpreting the larger number of topics. Jacobi, van Atteveldt, and Welbers (2016) proposed 

that the number of topics to retain should be assessed using a method analogous to Cattell’s 

(1966) scree test in the context of factor analyses. By calculating the perplexity of models with 

different numbers of topics, one can assess if there is a point at which the reduction in 

perplexity appears to “level off.” But Jacobi et al. emphasized that, as with factor analyses, one 

major criterion for selecting the number of topics when producing a topic model is the 

interpretability of the resulting topics. 

The topic modeling approach has several advantages over traditional approaches to 

studying a field’s historical development. First, the approach is extremely inclusive. It would 

be unrealistic for a researcher to read and analyze every ESM and JRME paper ever published, 

but the topic modeling approach can take account of this number of texts, implying that 

important historical trends are unlikely to be missed. Second, the approach is relatively neutral; 

because the analysis is conducted algorithmically, it does not prioritize one historical trend 

over another. However, this neutrality comes at a cost. The results of our analysis are purely 

descriptive; the topic modeling method identifies phenomena which must then be interpreted, 

a task that we attempt later in the article. Naturally, these interpretations are more subjective 

and open to criticism than the topic modeling analysis itself. 

 

Identifying the Topics 

In the nearly 5 decades since the first issues of ESM and JRME, the two journals have 

established themselves as the leading international venues for research in mathematics 

education. Indeed, in 2012, a project by the European Mathematics Society and the European 

Society for Research in Mathematics found that ESM and JRME were the only two journals 
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given the highest possible quality rating by at least two thirds of the expert mathematics 

educators sampled (Toerner & Arzarello, 2012). Consistent findings were reported by Nivens 

and Otten (2017) and Williams and Leatham (2017). We therefore focused our analysis on 

ESM and JRME, but we highlight that this does restrict our conclusions to English-language 

mathematics education research. 

We downloaded every “article” published between 1968 and 2015 by ESM and JRME 

from the journals’ websites. These “articles” included everything published within the journals 

and stored as pdfs on the websites, including research papers, editorials, book reviews, calls 

for papers, and so on. These pdf files were converted to plain text using ABBYY FineReader 

OCR Pro (version 12.1.4), and “nocontent,” such as copyright statements or watermarks, was 

removed. Our final dataset consisted of 1,933 files (9.49m words) from JRME and 2,062 files 

(14.48m words) from ESM. 

We used MALLET (Version 2.0.8RC2), a UNIX command-line topic modeling tool 

(McCallum, 2002), to calculate possible topic models. We first removed all the “stop words”—

very common English words, such as the, is, and a, that would not be topic specific—on 

MALLET’s default list. Inspection of the perplexity graph (discussed above), shown in Figure 

1, suggested that 35 topics seemed to be a reasonable choice, and an inspection of the topic 

models generated by different numbers of topics suggested that the overall message from the 

data did not seem to be sensitive to varying the number of topics slightly. 

 

 
Figure 1. The perplexity of topic models with varying numbers of topics. The dashed lines 

show our interpretation of where the graph “levels off.” 

 

We interpreted each topic that the algorithm identified using two different approaches. 

We first studied the words that were highly characteristic of each topic (in the sense that, when 

a word from this topic was inserted into a new document during our counterfactual document 

creation process, these highly characteristic words had a high probability of being selected). 
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For instance, the words with the highest probabilities in the first topic identified by the 

algorithm were proof, proofs, mathematics, mathematical, reasoning, argument, students, 

arguments, statement, deductive, and proving. From this, it seemed clear that this topic is 

concerned with proof and argumentation, and we gave it the name “proof and argumentation.” 

Second, for each topic, we studied those papers which had particularly high proportions of 

included words. For instance, the paper with the highest proportion of words from the “proof 

and argumentation” topic (64% excluding stop words) was Weber’s (2008) article about how 

mathematicians validate proofs. By studying these papers, we were able to further understand 

the nature of the topics, which contributed to our choice of names. 

Some of the topics were not related to the content of research. For instance, four topics 

were concerned with journal administration (e.g., announcements of special issues, advice to 

prospective authors, or lists of editorial board members), and another three consisted of non-

English words (ESM has published articles in both French and German). Clearly, articles 

written in French tend to have more linguistic similarity to each other than to those written in 

English, regardless of their academic content. We do not discuss these topics further, although 

it would be worthwhile to establish whether similar topics emerge from an analogous study of 

non-English language mathematics education research. 

The remaining 28 topics were assigned names based on their defining words and the 

nature of the papers that had particularly high proportions of words from them. The topic 

names, together with each topic’s characteristic words and the paper with the highest 

proportion of words from each topic, are shown in Table 1. To enable readers to better 

understand these 28 topics, we have listed the 10 papers with the highest proportions of words 

from each topic in a spreadsheet available at https://doi.org/10.6084/m9.figshare.4877429. 

 

Table 1 

The 28 Topics, Each With the Words That Best Characterize Them (in Order of Probability) 

and the Paper With the Highest Proportion of Words 

Topic name 

(ordered 

alphabetically) 

Characteristic words (top 20) 

Paper with the highest 

proportion of words from 

the topic 

Addition and 

subtraction 

children number children's addition counting 

subtraction strategies child numbers strategy 

arithmetic problems mental task count facts 

instruction development tasks ten 

The development of counting 

strategies for single-digit addition 

(Baroody, 1987) 

Analysis 

function concept limit definition calculus 

numbers number students negative infinite 

sequence mathematical infinity image formal 

process functions derivative point points 

An empirical study of students’ 

understanding of a logical structure in 

the definition of limit via the ε-strip 

activity (Roh, 2010) 

https://doi.org/10.6084/m9.figshare.4877429
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Constructivism 

mathematics learning mathematical 

knowledge development cognitive theory 

education activity research process 

understanding processes social individual 

press concepts view conceptual construction 

Interaction or intersubjectivity? A 

reply to Lerman (Steffe & Thompson, 

2000) 

Curriculum 

(especially 

Reform) 

mathematics curriculum school achievement 

students teachers student national textbooks 

standards grade high assessment schools 

content level curricula reform data textbook 

The impact of prior mathematics 

achievement on the relationship 

between high school mathematics 

curricula and postsecondary 

mathematics performance, course-

taking, and persistence (Post et al., 

2010) 

Didactical 

theories 

mathematical knowledge students teacher 

theoretical activity process teaching analysis 

research mathematics situations situation 

didactic didactical classroom springer case 

learning context 

Introduction teaching situations as 

object of research: Empirical studies 

within theoretical perspectives 

(Laborde & Perrin-Glorian, 2005) 

Discussions, 

reflections and 

essays 

question time make fact point part questions 

process made problem case view important 

kind work sense situation answer find paper 

Letter to the editor (Roberts, 2001) 

Dynamic 

geometry and 

visualization 

geometry visual figure spatial triangle angle 

geometric angles task logo diagram 

diagrams properties shapes triangles shape 

level van sides tasks 

Facility with plane shapes: A 

multifaceted skill (Warren & English, 

1995) 

Equity 

mathematics education school American 

cultural countries students social Chinese 

schools culture teachers African equity 

children educational ethnomathematics 

country Japanese parents 

Attention deficit disorder? (Silver, 

2003) 

Euclidean 

geometry 

geometry line point points figure circle plane 

lines geometrical angle triangle space 

straight parallel geometric fig figures 

theorem segment Euclidean 

Inversive geometry (Coxeter, 1971) 

Experimental 

designs 

test study group scores research items table 

mathematics tests significant results groups 

variables analysis treatment ability 

performance item journal experimental 

Interactions between structure-of-

intellect factors and two methods of 

presenting concepts of modulus seven 

arithmetic: A follow-up and 

refinement study (Behr & Eastman, 

1975) 

Formal analyses 

set concept number numbers elements 

concepts structure sets group order 

operations examples model operation 

relation system properties element relations 

objects 

Checker games in operational 

systems as media for an inductive 

approach to teaching algebra (Steiner 

& Kaufman, 1969) 

Gender 

mathematics differences achievement girls 

gender boys anxiety attitudes sex school 

performance study research high females 

ability educational factors motivation males 

Gender differences in a psychological 

model of mathematics achievement 

(Ethington, 1992) 

History and 

obituaries 

mathematics mathematical education book 

teaching history chapter mathematicians 

science university theory problems school 

historical geometry ideas curriculum 

educational development work 

The epos of Euclidean geometry in 

Greek secondary education (1836-

1985): Pressure for change and 

resistance (Toumasis, 1990) 

Mathematics 

education around 

the world 

pupils mathematics school teaching learning 

schools year work level education secondary 

teachers teacher mathematical project pupil 

years primary children educational 

Change in mathematics education 

since the late 1950’s—Ideas and 

realisation West Indies (Wilson, 

1978) 

Multilingual 

learners 

language mathematics English text reading 

writing mathematical word words texts 

linguistic languages learners bilingual 

Using two languages when learning 

mathematics (Moschkovich, 2007) 



 

 15 

learning written discourse meaning 

classrooms read 

Novel assessment 

tasks task assessment mathematical students 

mathematics modelling knowledge model 

cognitive competence results models level 

solutions quality performance springer 

information study 

Modes of modelling assessment—A 

literature review (Frejd, 2013) 

Observations of 

classroom 

discussion 

teacher classroom mathematical discourse 

interaction discussion analysis episode 

activity class learning interactions group 

social ideas talk work participation thinking 

it's 

Mathematical micro-identities: 

Moment-to-moment positioning and 

learning in a fourth-grade classroom 

(Wood, 2013) 

Problem solving 

problem problems solving solution solve 

mathematical problem-solving strategies 

word solutions information model strategy 

solved processes structure study process 

table correct 

Recall of mathematical problem 

information: Solving related 

problems (Silver, 1981) 

Proof and 

argumentation 

proof proofs mathematics mathematical 

reasoning argument students arguments 

statement deductive proving examples 

number true mathematicians theorem 

statements prove logical argumentation 

How mathematicians determine if an 

argument is a valid proof (Weber, 

2008) 

Quantitative 

assessment of 

reasoning 

correct items errors reasoning item responses 

answer number table subjects answers 

proportional grade incorrect ratio intuitive 

numbers error response type 

The development of proportional 

reasoning and the ratio concept Part 

I—Differentiation of stages 

(Noelting, 1980) 

Rational numbers 

fractions number fraction division numbers 

unit multiplication rational parts decimal 

units knowledge understanding fractional 

pieces operations partitioning part scheme 

multiplicative 

Michael’s fraction schemes (Saenz-

Ludlow, 1994) 

School algebra 

algebra algebraic equation function 

equations functions graph students graphs 

expressions representations expression 

computer variable arithmetic linear symbolic 

values understanding representation 

Evolution of a teaching approach for 

beginning algebra (Banerjee & 

Subramaniam, 2012) 

Semiotics and 

embodied 

cognition 

mathematical objects semiotic gestures signs 

meaning object sign gesture fig language 

mathematics radford activity springer hand 

space line body metaphor 

Grounded blends and mathematical 

gesture spaces: developing 

mathematical understandings via 

gestures (Yoon, Thomas & Dreyfus, 

2011) 

Sociocultural 

theory 

mathematics education social school 

practices practice work mathematical 

knowledge research identity cultural activity 

power learning context discourse people 

theory everyday 

Symbolising the real in mathematics 

education (Pais, 2015) 

Spatial reasoning 

length area unit figure reasoning units rate 

number measurement pattern height change 

time measure relationship quantities cubes 

volume generalization distance 

Fifth graders’ enumeration of cubes 

in 3D arrays: Conceptual progress in 

an inquiry-based classroom (Battista, 

1999) 

Statistics and 

probability 

probability data sample statistics statistical 

reasoning chance average sampling 

distribution dice thinking outcomes 

responses grade level probabilistic variation 

events population 

A framework for assessing and 

nurturing young children’s thinking 

in probability (Jones, Langrall, 

Thornton, & Mogill, 1997) 

Teachers’ 

knowledge and 

beliefs 

teachers teacher mathematics teaching 

knowledge beliefs lesson classroom learning 

content practice mathematical education 

professional student thinking lessons school 

preservice instruction 

Preservice teachers’ sources of 

decisions in teaching secondary 

mathematics (Bush, 1986) 
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Teaching 

approaches 

students student class group mathematics 

school time study questions groups work 

level classes year problems asked learning 

instruction high activities 

Teacher benefits from using 

impromptu writing prompts in 

algebra classes (Miller, 1992) 

 

We make several remarks about Table 1. First, readers will have noticed that some 

words define more than one topic (for example group). This highlights one advantage of topic 

modeling. If the word group appears near to the words set, elements, and operation, it is likely 

to have a different meaning from if it appears near to the words treatment, experimental, 

pretest, and posttest. 

Second, although it was straightforward to identify most of the topics by studying their 

characteristic words and most representative papers, in other cases, this was not clear. Here, 

we briefly justify our characterizations for those topics where this may not be obvious. 

Papers made up of particularly high proportions of words from the “teaching 

approaches” topic typically reported discussions or evaluations of particular classroom 

teaching strategies. For example, Leikin and Zaslavsky’s (1997) investigation of student 

interactions in small-group settings had a high proportion of words from this topic, as did 

Brookhart, Andolina, Zuza, and Furman’s (2004) discussion of student self-assessment. 

The common theme among papers that had high proportions of words from the 

“didactical theories” topic was that they used or discussed theories from the continental 

European tradition, such as Chevallard’s (1999) anthropological theory of didactics (ATD) or 

Brousseau’s (2006) theory of didactical situations (TDS). For instance, Barbe, Bosch, 

Espinoza, and Gascon’s (2005) analysis, using ATD, of the teaching of functions in Spanish 

high schools had a high proportion of words from this topic. As would be expected, as well as 

having many words from the “didactical theories” topic, this paper also had a high proportion 

from the analysis topic. 

Papers that had high proportions of words from the “experimental designs” topic 

typically used experimental designs with random allocation of participants to conditions. Of 

the 10 papers with the highest proportions of words from this topic, nine used random 

allocation at the participant level to investigate a variety of different research questions. 

Papers that had high proportions of words from the “quantitative assessment of 

reasoning” topic typically used large samples to document reasoning behavior. The majority 

of the 10 papers with the highest proportions of words from this topic investigated aspects of 

proportional reasoning, but there was also a survey of responses to the Wason selection task 
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(Adi, Karplus, & Lawson, 1980) and an investigation of adults’ reasoning about natural 

numbers (Vamvakoussi, Van Dooren, & Verschaffel, 2013). 

All the papers with high proportions of words from the “sociocultural theory” topic 

used social theories to analyze aspects of mathematics learning. Indeed, two of the papers with 

the highest proportions from this topic were from a special issue entitled “Social Theory and 

Research in Mathematics Education” (Morgan, 2014; Pais & Valero, 2014). 

Of the 10 papers with the highest proportion of words from the “constructivism” topic, 

seven were authored by Cobb or Steffe (e.g., Cobb, Yackel, & Wood, 1992; Steffe & Kieren, 

1994), and the remaining papers either used, discussed, or critiqued constructivist approaches 

to mathematics education. 

Papers with high numbers of words from the “formal analyses” topic consisted of 

attempts to provide formal mathematical analyses of educational tasks or theories. For instance, 

Wittmann’s (1973) attempt to provide an algebraic model of an aspect of Piagetian theory had 

a large proportion of words from this topic. 

Finally, there was a topic—“discussions, reflections and essays”—that seemed to 

represent reflective, nonempirical discussions of various issues. Papers that had high 

proportions of words from this topic often discussed meta-level research issues. Examples 

included letters to the editor, a discussion of citation practices in mathematics education 

(Leatham, 2015), and various editorials (e.g., Williams, 2007). 

Finally, we attempted to verify that our interpretations of the topics were reasonable by 

studying the linear combinations of “topic proportions” for particularly highly cited papers 

from each journal. For instance, our topic model suggested that Tall and Vinner’s (1981) paper 

on students’ concept images of limits and continuity was mostly made up of the “analysis” 

topic (which provided 54% of the paper’s words2) and the “discussions, reflections, and essays” 

topic (24% of the paper’s words). Similarly, the model suggested that Yackel and Cobb’s 

(1996) paper that introduced the notion of sociomathematical norms was largely made up of 

the “observations of classroom discussion” (42%) and “constructivism” (27%) topics. Both of 

these results seemed consistent with the content of the respective papers. 

 

  

                                                 

2 For the remainder of the article, when we cite the percentage or proportion of words from a 

particular topic, we are excluding stop words (particularly common words such as the, it, or a) 

from the denominator. 
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Changes Over Time 

To look at how the prominence of each topic has changed over time, we used the linear 

combinations of topic proportions to calculate the mean proportion of words from each topic 

published by each journal in each year. For example, we took the proportion of words from the 

“proof and argumentation” topic in every paper published by ESM in 2015 and calculated the 

mean. This revealed that, normalized by paper length, 2.7% of the words published in ESM in 

2015 were related to proof and argumentation. We did the same for JRME (0.22%) and for 

every year in our sample. We then calculated similar figures for the other 27 topics. This 

allowed us to track the extent to which each topic has been present in the two journals over the 

last 5 decades. 

To help organize our discussion, we further classified our topics into five broad 

categories. Recall that Lakatos (1978) suggested that academic disciplines develop through the 

competition of research programmes, which can be characterized by their heuristics and hard 

cores (and, to a lesser extent, their protective belts). As we noted earlier, this means that there 

are at least two ways of tracking the development of an academic discipline. One is to consider 

the relative prominence of topics related to research programmes’ heuristics and hard cores; a 

second is to look at the substantive content to which the research programmes have been 

applied. We therefore categorized each of our topics as being primarily related to a research 

programme’s hard core, a research programme’s heuristic, or to substantive domain content. 

Because mathematics education research covers a broad range of content, to help structure our 

discussion, we further divided the domain content topics into three subcatgeories relating to 

“mathematical content,” “mathematical processes,” and “teachers and learning environments.” 

As discussed above, Lakatos (1978) himself accepted that the distinction between a 

programme’s hard core and heuristic is sometimes a matter of convention, so this distinction 

is necessarily subjective. In contrast, we found it relatively straightforward to identify those 

topics related to mathematical content, mathematical processes, and teachers and learning 

environments. One ambiguity came from the “quantitative assessment of reasoning” topic, 

which seemed to be related to both a heuristic (large-scale surveys) and a mathematical process 

(reasoning). For the purposes of the discussion and figures that follow, we categorized this 

topic as being related to mathematical processes. Similarly, the “history and obituaries” topic 

seemed not easily to fit within one of our three domain content subcategories; in the discussion 

and figures below, we have included it within the teachers and learning environments section. 

Our discussion of these changes over time is organized into two main sections. First, 

by considering the topics categorized as “mathematical content,” “mathematical processes,” 
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and “teachers and learning environments,” we consider how the prominence of different 

research foci has changed in the last 5 decades. Second, we discuss the changing theoretical 

perspectives adopted by ESM and JRME authors by considering topics related to the hard cores 

and heuristics of different research programmes. 

 

Changes in Domain Content 

Figures 2, 3, and 4 show the changes in mean topic proportions per year for topics 

related to the “mathematical content,” “mathematical processes,” and “teachers and learning 

environments” subcategories, respectively. The points on these graphs show the mean 

proportion of words from each paper published during the given year that were from the given 

topic. In each figure, graphs are ordered according to positive correlations between year and 

mean topic proportion (taking the average for each journal) with the highest at the top. For 

instance, the correlations between the mean topic proportions and year for the “school algebra” 

topic (shown at the top of Figure 2) were r = +.49 for ESM and r = +.60 for JRME, whereas 

the equivalent correlations for the “Euclidean geometry” topic (shown at the bottom of Figure 

2) were r = –.61 for ESM and r = –.44 for JRME. 
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Figure 2. The mean proportion of words (excluding stop words) from mathematical content 

topics published by each journal per year. Lines show cubics of best fit. Note that because these 

graphs are designed to show within-topic changes over time, they have different y-axis scales. 
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Figure 3. The mean proportion of words (excluding stop words) from mathematical processes 

topics published by each journal per year. Lines show cubics of best fit. Note that because these 

graphs are designed to show within-topic changes over time, they have different y-axis scales. 
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Figure 4. The mean proportion of words (excluding stop words) from teachers and learning 

environments topics published by each journal per year. Lines show cubics of best fit. Note 

that because these graphs are designed to show within-topic changes over time, they have 

different y-axis scales. 

 

We make several remarks about these figures, first concerning those topics related to 

mathematical content. Figure 2 shows that there has been a substantial decline in interest in 

Euclidean geometry since the 1970s. This has especially been the case in ESM, which devoted 



 

 23 

a great deal of attention to this topic in its early years. However, the fall in prominence of 

Euclidean geometry in JRME has also been substantial but is somewhat disguised by the scale 

on the vertical axis (the correlations between year and topic proportion were r = –.61 and r = 

–.44 for ESM and JRME, respectively). In contrast, both the “school algebra” and the 

“analysis” topics have received gradually increasing levels of interest, whereas the extent to 

which “rational numbers” and “statistics and probability” have been discussed has not 

substantially changed since the 1970s. The “addition and subtraction” topic shows a peak of 

interest during the 1980s, but the two journals have apparently devoted less attention to it in 

recent years. 

Two of the mathematical processes topics, shown in Figure 3, also show peaks during 

the 1980s. There seems to have been somewhat more interest in problem solving during that 

decade than there is today, and the same is true for the “quantitative assessment of reasoning” 

topic, especially in JRME. The “proof and argumentation” topic seems to have steadily 

increased in prominence since 2000, but the remaining mathematical processes topics show no 

strong trends. 

Several topics related to teaching and learning environments, shown in Figure 4, have 

received an increasing level of interest over the past 5 decades. The most notable is the 

increased focus on teacher knowledge and beliefs, which has become steadily more prominent 

in both journals since the 1980s, perhaps following Shulman’s (1986) influential work. The 

“curriculum (especially reform)” topic has also grown in prominence since 1990; perhaps 

unsurprisingly given NCTM’s involvement in curriculum reform efforts, the bulk of this 

increase has been in JRME. Similarly, in recent years, there appears to have been an increased 

focus on designing and evaluating novel assessment methods in both journals. 

There is also a group of topics shown in Figure 4 that have not shown substantial 

changes in the extent to which they have been discussed. The “multilingual learners,” “teaching 

approaches,” “equity,” and “history and obituaries” topics all fall into this group. The “gender” 

topic shows a notable peak: ESM published almost no articles with words from this topic until 

the late 1970s, a situation that changed substantially during the 1980s. Since that decade, 

however, both ESM and JRME appear to have published fewer articles focused on gender. 

Finally, discussions of “mathematics education around the world” appear to have become less 

of a priority than they once were. 
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Changes in Research Programmes 

Figure 5 shows changes in prominence over time for those topics categorized as being 

related either to a research programme’s hard core or to its heuristic. Again, the graphs are 

ordered by the strength of the correlation between year and mean topic proportion. In the 

sections that follow, we discuss the three main trends that can be seen in these figures. First, 

we consider the “social turn” as identified by Lerman (1996). Second, we identify and discuss 

the increased level of theoretical diversity seen in the discipline since the late 1990s. Finally, 

we examine the dramatic decline in experimental methods seen since the 1970s. 
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Figure 5. The mean proportion of words (excluding stop words) from the eight hard core and 

heuristic topics published by each journal per year. Lines show cubics of best fit. Note that 

because these graphs are designed to show within-topic changes over time, they have different 

y-axis scales. 

 

Before proceeding to discuss these three issues, we briefly note two other trends. First, 

the prominence of the “formal analyses” topic has declined significantly since the 1970s. In 

articles published by ESM in the 1970s, between 10% and 20% of words were from this topic, 

which relates to formal mathematical analyses of educational theories or situations. In contrast, 

very few researchers since the mid-1980s appear to have adopted this heuristic. The 

identification of the existence, and subsequent decline, of this “formal analyses” topic—which 
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appears not to be widely commented on in existing historical accounts of the field’s 

development—gives some credibility to our earlier suggestion that the inclusive nature of the 

topic modeling approach allows us to identify trends that other methods may miss. Second, we 

note that the “discussion, reflections, and essays” topic has shown a steady decline in 

prominence in ESM. In contrast, JRME seems to have maintained a steady—but lower—rate 

of publication of words from this topic. 

The social turn. Earlier in the article, we offered a rational reconstruction of the social 

turn in which we suggested that the emergence of the sociocultural research programme in the 

1990s was in reaction to what Lerman (1996) considered to be a degenerating constructivist 

programme. By Lerman’s account, if the social turn had become embedded into the mainstream 

mathematics education literature at the expense of the constructivist programme, then over time 

we would have expected to have seen a gradual increase in prominence of the “sociocultural 

theory” topic and a gradual decrease in prominence of the “constructivism” topic. 

This is precisely what our data show. Figure 6 shows the proportions of words from 

each topic by year collapsed across journals. The “constructivism” topic shows a large peak of 

interest from the late 1980s to mid-1990s before declining in prominence from the late 1990s 

onwards. At around the same time that the field’s interest in constructivism declined, the 

proportion of words from the “sociocultural theory” topic began to increase and is now at a 

roughly similar level to that of the “constructivism” topic at its peak (when it was widely seen 

as dominating mathematics education research). The field’s interest in constructivism is now 

at the low levels seen in the 1970s. Although some have questioned the extent to which the 

social turn represents a lasting change to the discipline (e.g., Gates & Jorgensen, 2015; 

Jablonka & Bergsten, 2010), this analysis suggests that it was a significant development, which 

has had lasting consequences. 

  



 

 27 

 

 
Figure 6. The social turn. The mean proportion of words from the “sociocultural” and 

“constructivist” topics by year collapsed across journals. Lines are cubics of best fit. 

 

Although the sociocultural and constructivism hard cores are distinct, it is notable that 

the sociocultural research programme shares a similar heuristic to the social branch of the 

constructivist programme, namely, a focus on observing classroom interactions. Indeed, this 

heuristic change—from individual clinical interviews to observations of interactions—is one 

way of characterizing the shift from radical constructivism to social constructivism. Given this, 

it is perhaps unsurprising to see that Figure 5 shows a complementary steady increase in the 

proportion of words coming from the “observations of classroom discourse” topic since the 

1990s. This trend started at around the time that social constructivism was identified by Ernest 

(1991) and has continued through the social turn. 

Theoretical diversification. “Sociocultural theory” is not the only topic from the hard 

core and heuristic category that has seen a substantial increase in prominence since 2000. Both 

the “semiotics and embodied cognition” and the “didactical theories” topics have shown a 

similar development over the same period, particularly in ESM. We might therefore 

characterize mathematics education as currently being in a phase of theoretical diversity in 

which many research programmes are competing for researchers’ attention. 

Notably, both the “semiotics and embodied cognition” and “didactical theories” topics 

cover multiple research programmes. Although both the semiotics and the embodied cognition 

research programmes have hard cores that emphasize the importance of non-cognitive factors 

to mathematical thinking, they differ in where their emphasis is placed. Semioticians focus on 

the roles of signs and symbols in mathematical thought (e.g. Presmeg, Radford, Roth, & 

Kadunz, 2016), whereas embodied cognition researchers focus on the role of the body outside 

of the brain (e.g., Núñez, Edwards, & Matos, 1999). Of course, some researchers conceptualize 

certain aspects of bodily movement—gestures or gazes, for instance—as being signifying acts 



 

 28 

(e.g., Radford, 2003; Roth, 2012), which provides a natural link between the two research 

programmes and which may explain why “semiotics and embodied cognition” emerged as one 

topic. Similarly, at least two research programmes are contained within our “didactical 

theories” topic: the ATD of Chevellard (1999) and the TDS of Brousseau (2006). Therefore, if 

anything, our analysis underestimates the extent to which the field has diversified. 

This theoretical diversification has been noted before (e.g., Bikner-Ahsbahs & 

Prediger, 2010; Sriraman & English, 2005). Whereas some researchers have argued that a 

diversity of theoretical approaches is valuable for allowing multiple perspectives to be brought 

to the same phenomena (e.g., Reid & Knipping, 2010; Simon, 2009), others have highlighted 

dangers. For instance, Dreyfus (2006) complained that mathematics educators “tend to invent 

theories, or at least theoretical ideas, at a pace faster than we produce data to possibly refute 

our theories” (p. 78). 

Dreyfus’s (2006) argument can be interpreted within Lakatos’s (1978) framework. 

Recall that Lakatos suggested that progress in an academic discipline comes about when 

research programmes compete for researchers’ attention. One way of assessing a programme 

is by considering how it incorporates anomalies into its protective belt. Those programmes that 

are progressing will, eventually, attract more attention than those that are degenerating. 

Therefore, a degree of programme diversity is a sign of a maturing academic discipline, as long 

as these programmes are challenging each other for researchers’ attention by identifying 

anomalies and evaluating the resulting modifications to protective belts. Via this process, 

researchers can decide whether a particular programme is progressing or degenerating and 

allocate their attention accordingly. As long as this process occurs, some programme diversity 

is a strength (cf. Cobb, 2007). However, if, as Dreyfus presumably felt, not all programmes in 

mathematics education are regularly challenged in this way, this may lead to a lack of progress. 

One attempt to deal with the field’s recent theoretical diversity, and concerns about a 

lack of anomalies, is to “network theories” (e.g., Bikner-Ahsbahs & Prediger, 2010; Kidron, 

Lenfant, Bikner-Ahsbahs, Artigue, & Dreyfus, 2008). Through this process, researchers 

attempt to understand, synthesize, and perhaps even unify different theoretical approaches. The 

aim is to find connections as far as is possible and useful but not further than that. Whether 

complete unification is possible would seem to turn on whether different theoretical approaches 

are genuinely different programmes, in the sense that they have incompatible hard cores, or 

whether they have similar hard cores that, for historical reasons, are merely expressed using 

different terminology. In other words, these networking attempts could be a helpful method of 
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determining whether or not different theoretical approaches are genuinely different research 

programmes. 

Regardless of whether unification is possible, Lakatos (1978) emphasized that 

understanding and engaging with different research programmes is likely to contribute to 

identifying and evaluating anomalies. Although it is possible to identify anomalies from within 

a research programme, Lakatos wrote that “it is only constructive criticism which, with the 

help of rival research programmes, can achieve real success” (p. 92) and that “the sooner 

competition starts, the better for progress” (p. 69). Feyerabend (1985, 1993) also emphasized 

the advantages that accrue to a field that has multiple competing research programmes: “The 

best criticism is provided by those theories which can replace the rivals they have removed” 

(Feyerabend, 1985, p. 110). The social turn provides an example of this: Lerman’s (1996) 

critique of social constructivism was heavily informed by his knowledge of sociocultural 

theory, the rival programme. 

The experimental cliff. Although the social turn was an important development in the 

history of mathematics education research, it is not the most striking trend seen in our data. 

During the 1970s, the “experimental methods” topic was dominant to an extent not seen in any 

other topic during any subsequent period. Indeed, between 30% and 40% of words published 

in JRME in the 1970s were from this topic. Although this trend is most striking in JRME, a 

similar pattern can be seen in ESM. The correlations between the topic’s proportion and year 

are r = –.86 for JRME and r = –.63 for ESM. Across both journals, the mean proportion of 

words in each paper from the “experimental methods” topic was 22% in the 1970s, 10% in the 

1980s, 3% in the 1990s, 1.7% in the 2000s, and 1.5% in the 2010s. We refer to this development 

as the “experimental cliff.” 

It is notable that there appears to have been no recent upturn in the prominence of this 

topic despite educational policymakers actively trying to encourage, through targeted funding 

initiatives, the use of experimental designs in education research. For instance, the U.S. 

Department of Education’s Strategic Plan 2002-2007 set an explicit target, stating that 75% of 

funded projects that address causal questions should use randomized experimental designs 

(U.S. Department of Education, 2002), and, in 2011, the UK government created a large new 

source of educational research funding, the Education Endowment Foundation, that was 

required to fund only randomized experimental designs. These official encouragements have 

yet to have any effect on the frequency with which experimental designs appear in ESM or 

JRME. 
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Experimental designs are a subset of quantitative research methods. Although the 

“experimental designs” topic has substantially decreased in prominence, it is notable that we 

did not identify a qualitative research methods topic showing an upwards trend of a similar 

magnitude. Our explanation for this observation is that articles that report qualitative methods 

tend to be more linguistically diverse than those that report quantitative methods. Consistent 

with this suggestion, although we found no unified topic focused on qualitative methods, we 

did find topics concerned with classroom discourse, sociocultural theory, semiotics and 

embodied cognition, and didactical theories. All of these topics reflect research programmes 

that typically (but not exclusively) use qualitative research methods, and all have shown 

increases since the 1970s. 

Our discussion of the experimental cliff falls into four main sections. First, we 

characterize the research programme most closely identified with the experimental method, 

which, following Cobb (2007), we refer to as “experimental psychology.” Second, drawing on 

contemporary sources, we consider reasons for this trend. Third, we report a bibliometric 

analysis of the fate of the experimental psychology programme and conclude that it is in good 

health, albeit absent from the mathematics education literature. Finally, we draw on Lakatos’s 

(1978) account to reflect on the possible implications of this absence of experimental work for 

progress in the field. 

Which research programmes in mathematics education are most closely associated with 

the experimental method? Different authors have used different terminology. Thompson 

(1982), for instance, contrasted constructivism with what he called “environmentalism.” He 

characterized this latter research programme as being focused on understanding mathematics 

learning through the experimental manipulation of the environment rather than, as a 

constructivist would, the consideration of students’ internal mental constructions. Thus, 

environmentalists would typically try to see how some manipulation of the environment 

affected student or teacher behavior. Cobb (2007) offered a similar characterization but 

referred to the research programme as “experimental psychology,” contrasting it with 

“cognitive psychology,” a term he used to describe what we have been calling constructivism. 

Clements and Ellerton (1996) used different terminology again, referring to the research 

programme as “the ‘scientific’ approach,” and Kilpatrick (1992), following Begle (1969), used 

the term “experimental science.” 

Here we refer to this research programme using the term “experimental psychology” 

and characterize it as having the aim of testing or generating theories of human behavior, 

typically by manipulating experimental stimuli in ways designed to reveal underlying 
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psychological processes or associations (e.g., Mook, 1983). These processes could be cognitive 

in nature, social in nature, developmental in nature, or simply behavioral. Because of the large 

range of psychological processes that can be, and are, studied using experimental methods, we 

believe that Cobb’s (2007) use of the term “cognitive psychology” to refer to constructivism is 

misleading. Most cognitive psychologists would consider their research area to be the subset 

of experimental psychology that focuses on understanding internal cognitive processes rather 

than other types of behavior. Support for this assertion comes from the observation that journals 

such as the Quarterly Journal of Experimental Psychology or the Journal of Experimental 

Psychology: General publish many cognitive studies (and from the observation that journals 

such as Cognition or Cognitive Psychology publish few constructivist studies). 

If we understand the “experimental cliff” in mathematics education to be a dramatic 

move away from the experimental psychology research programme and towards the 

constructivist research programme, what was behind it? Kilpatrick (1992) pointed out that 

some researchers at the time felt that mathematics education research was not successfully 

influencing educational practice and suggested that this encouraged the exploration of 

alternatives. Clements and Ellerton (1996) attributed the change to two main factors. First, they 

argued that doubts had begun to form regarding the validity of null hypothesis significance 

testing, a critical part of the experimental method (e.g., Carver, 1978; Menon, 1993).3 Second, 

and more importantly, they suggested that there was a reaction against the dominance of the 

experimental psychology research programme and a desire for more diverse approaches to be 

permitted. Clements and Ellerton went as far as describing experimental psychology as “a 

straitjacket” (p. 74) from which mathematics education research had to emerge. 

A great deal of discussion of this latter point took place in the pages of JRME during 

1977–1979. Following a series of letters to JRME that debated the merits of experimental and 

nonexperimental research (Aiken, 1977; Fennema, 1978; Rappaport, 1977; Scott, 1977; 

Shaughnessy, 1978; Steffe, 1978; Wheeler, 1978), Lester and Kerr (1979) wrote a position 

statement that explicitly argued for greater methodological diversity. In a series of 

                                                 

3 From a contemporary perspective, several of the critiques offered by these authors seem 

misplaced. For instance, Clements and Ellerton (1996) were incorrect to state that “almost any 

study can be made to show significant results if a sufficiently large sample is used” (p. 80): this 

would only be the case for designs in which participants are not randomly allocated into groups. 

Furthermore, recent research on the relationship between p values and Bayes factors indicates 

that it is an exaggeration to say that p values reveal “nothing” about the truth of the null 

hypothesis (e.g. Held, 2010; Sellke, Bayarri, & Berger, 2001). 
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recommendations, they suggested that mathematics education doctoral students should be 

trained in both experimental methods and nonexperimental methods, such as clinical 

interviewing and the analysis of verbal protocols required to conduct constructivist research; 

that JRME must be willing to publish both experimental and nonexperimental research; and 

that researchers should openly debate their recommendation for an increase in the diversity of 

research programmes accepted in the field. 

The experimental cliff shown in Figure 5 indicates that Lester and Kerr’s (1979) call 

for nonexperimental work to become more acceptable was remarkably successful but at the 

cost of their call for methodological diversity. Rather than the constructivist research 

programme becoming an accepted approach alongside the experimental psychology 

programme, as Lester and Kerr were advocating, it replaced it. 

However, we do not believe that the experimental psychology research programme 

degenerated to the point where it was abandoned entirely. Our impression is that there is a 

thriving research community conducting psychological research on mathematics learning using 

experimental methods; indeed, we have contributed to some of this work (e.g., Alcock et al., 

2016). One indication of the current health of the experimental psychology programme, as it 

pertains to the learning of mathematics, is the recent foundation of the Journal of Numerical 

Cognition, the official journal of the Mathematical Cognition and Learning Society (Towse, 

2015). 

To empirically test our hypothesis that the experimental psychology research 

programme has continued to actively investigate mathematics learning, albeit only outside of 

mathematics education journals, we conducted an analysis of publications using the Scopus 

bibliographic database. Our goal was to identify trends in the quantity of published research 

on mathematics learning from the experimental psychology research programme outside of the 

mathematics education literature. 

We searched for all psychology articles that contained the words experiment or 

experimental in any field and that contained learning and either mathematical or numerical in 

the abstract or title. Because Scopus includes the mathematics education journals Mathematical 

Thinking and Learning and the Journal of Mathematical Behavior in their psychology 

category, we excluded these from our search.4 We calculated the number of articles per year 

                                                 

4 Our formal Scopus search term was ((TITLE-ABS(mathematical OR numerical) AND 

TITLE-ABS(learning) AND SUBJAREA(psyc)) AND ALL(experimental OR experiment) 
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that met these criteria, alongside the total number of experimental psychology articles 

published each year (psychology articles that included experiment or experimental in any field, 

excluding the two mathematics education journals that Scopus includes in the psychology 

category). This allowed us to estimate the proportion of experimental psychology articles 

published per year that focused on mathematics learning.5 These proportions are plotted in 

Figure 7 (right axis), alongside the “experimental methods” topic proportions by year collapsed 

across both ESM and JRME (left axis). We have plotted the number of experimental 

psychology papers on mathematics learning as a percentage of the total number of experimental 

psychology papers published, which yields a relatively low percentage, but in absolute terms 

the number of papers that met our (fairly restricted) search term was relatively large (89 in 

2015, compared to the 72 articles published in ESM and JRME in that year). 

 

 
Figure 7. The experimental cliff. Trends over time for (a) the proportion of words from the 

“experimental methods” topic (collapsed across ESM and JRME), shown on the left axis, and 

(b) estimates of the proportion of experimental psychology articles that focus on mathematics 

learning, shown on the right axis. Lines are cubics of best fit. 

 

Figure 7 indicates that over the same period in which the proportion of experimental 

psychology work published in ESM and JRME has been falling, the proportion of experimental 

work in general psychology journals that focus on mathematics learning has been rising. Given 

                                                 

AND (EXCLUDE(EXACTSRCTITLE,"Journal Of Mathematical Behavior") OR EXCLUDE 

(EXACTSRCTITLE,"Mathematical Thinking And Learning"))). 
5 The results reported in this section are robust to minor variations in these search terms. For 

instance, a similar pattern is found when searching for articles from sources that have the words 

psychology or cognitive in their title, rather than the psychology subject area; when removing 

the experiment or experimental criterion; or when searching for articles with education rather 

than learning in the title, abstract, or keywords etc. Similarly, consistent results are obtained if 

Mathematical Thinking and Learning and the Journal of Mathematical Behavior are included 

in the psychology category. 
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this, perhaps the term “experimental migration” might be a more accurate characterization of 

what we have called the “experimental cliff.” In sum, there appears to be a great deal of 

research being conducted on mathematics learning within the experimental psychology 

research programme, but little of this work is being published in the two leading mathematics 

education research journals. From the perspective of Lakatos’s (1978) methodology of 

scientific research programmes, we argue that this situation is highly suboptimal. 

As we have discussed, according to Lakatos’s account, competition between 

programmes is an effective method of driving scientific progress. This commonly happens 

when anomalies are identified that challenge the hard cores of established research 

programmes, and the programmes react by incorporating rescue hypotheses into their 

protective belts. Evaluating these rescue hypotheses gives one way for researchers to decide 

whether a programme is progressing or degenerating. Lakatos (1978) and Feyerabend (1985, 

1993) both believed that the most effective challenges to research programmes come from the 

perspective of a rival programme. If this belief is correct,6 then knowledge of multiple 

programmes would be helpful for progression in the field. For instance, the anomalies that led 

to the social challenge to constructivism (Carraher, 1988; Lave, 1988; Walkerdine, 1988) were 

highly visible in the mathematics education community. Indeed, Carraher’s (1988) work was 

presented as a plenary at the annual PME conference in 1988. If this work had remained 

isolated from mathematics education researchers, perhaps few would have appreciated the 

seriousness of the anomaly posed to the constructivist programme. 

However, assuming that researchers primarily read articles from journals in which they 

also publish, then publishing work from different research programmes in disjoint sets of 

outlets is likely to be a substantial barrier to the development of this knowledge. Specifically, 

if knowledge of the experimental psychology research programme is to be developed among 

mathematics education researchers, then either some experimental psychology research must 

be published in mathematics education journals, or mathematics education researchers must 

make a concerted effort to read journals from outside the discipline. Equally, it is hard to see 

how experimental psychology researchers will develop knowledge of, say, the sociocultural 

programme unless research from this tradition is published in the journals that they primarily 

read, or unless they widen the range of journals that they typically read. 

                                                 

6 Recall that Kuhn (1962) felt that different research programmes are incommensurate, so he 

would have rejected this argument. In contrast, Lakatos (1978) argued that scientific progress 

is more than “a matter for mob psychology” (p. 91). 
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What kinds of anomalies might be identified if there were more interactions between 

the research programmes? Here we give two indicative examples. Some work in the 

experimental psychology research programme has suggested that instructional approaches 

termed direct or explicit instruction may be more effective for student attainment than those 

relying on guided discovery and collaborative group learning (Gersten et al., 2009; Kirschner, 

Sweller, & Clark, 2006; Klahr & Nigam, 2004). On the face of it, this would appear to be an 

anomaly for the sociocultural research programme. If teacher-centered instructional 

approaches, sometimes involving scripted explanations and an emphasis on mastery of skills 

through sustained individual repetitive practice, are successful in building both procedural and 

conceptual mathematical knowledge, then how can it be that knowledge is constituted 

primarily in social groups rather than in individuals? To be clear, we do not suggest that this is 

an insurmountable anomaly for the sociocultural research programme, only that it is one that 

should be accommodated, if possible, in its protective belt. 

As an example in the opposite direction, consider recent sociocultural work on micro-

identities. Many sociocultural researchers have noticed that the mathematical identities 

students adopt can substantially influence how they learn mathematics (e.g., Martin, 2000; 

Sfard & Prusak, 2005). Traditionally, identities have been conceived as being relatively stable 

over time. However, recently Wood (2013) illustrated how students’ identities may change 

over extremely short periods in response to relatively minor changes in context. She used the 

terms “micro-identity” and “macro-identity” to distinguish between identities that show 

moment-to-moment changes and those that are more stable over time. Importantly, Wood 

reported a case study of one student who demonstrated at least three different mathematical 

micro-identities during the course of a single lesson, and Wood argued that these developing 

identities influenced the quality of the student’s learning. This observation poses an interesting 

challenge to the experimental psychology research programme in which researchers often 

assume that the factors that affect behavior within a study are due to relatively stable individual 

traits of the participant, to the experimental stimuli, or to independently and identically 

distributed random noise. Wood’s study implies that actions that appear innocuous from the 

researchers’ perspective may systematically influence behavior in a way that cannot be 

assumed to be identical across participants or conditions, an observation that deserves attention. 

To be clear, the benefits of more between-programme engagement is symmetric. We 

are not merely arguing that mathematics education would benefit from some sociocultural, 

didactical theory, and semiotic researchers being exposed to experimental psychology research 

but also that experimental psychology researchers would benefit from exposure to the research 
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programmes common in the modern mathematics education literature. If Lakatos’s (1978) 

analysis of academic disciplines is correct, then exposure to multiple research programmes aids 

the effective competition between programmes and, therefore, progresses the discipline. 

 

Theoretical Remarks 

We conclude the article by discussing two main issues related to our empirical and 

theoretical analysis. First, we clarify our results by considering precisely what our topic 

modeling approach allows us to conclude about a research programme’s trajectory. Second, 

we discuss whether Feyerabend’s (1981, 1993) criticisms of Lakatos’s (1978) methodology of 

scientific research programmes apply to our own work. 

 

Using Topic Modeling to Identify Programme Shifts 

Our analysis used a topic modeling approach to identify trends in the mathematics 

education literature with a particular focus on the research programmes that researchers have 

adopted over the last 5 decades. The approach works by analyzing the occurrence of words 

within papers. Although this method seems to have been successful at identifying topics that 

represent research programmes, the presence of a particular word associated with a particular 

research programme is not sufficient to conclude that the programme is progressing or 

degenerating. The same words are used to denote ideas from the hard core of a programme 

both during progressing periods and degenerating periods. 

The implication of this observation is that we cannot directly conclude that a 

programme has degenerated in Lakatos’s (1978) sense, only that interest in it has declined over 

time. Specifically, although degenerating research programmes will decline in prominence 

over time, we cannot conclude that if a research programme has declined in prominence it must 

have been degenerating. Programmes may lose (or gain) interest for reasons unrelated to 

whether they are degenerating (or progressing). Indeed, we have suggested that the 

experimental psychology programme did not degenerate but rather migrated. This raises the 

possibility that a similar phenomenon could account for other trends observed in our data. For 

instance, perhaps constructivist mathematics education research outputs have migrated to 

different (or new) journals since the social turn. Similarly, perhaps educational research on 

Euclidean geometry has migrated since the 1970s. Although we have no reason to believe that 

these hypotheses are plausible, further research would be required to test them directly. 
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Feyerabend’s Critique of Lakatos 

Throughout this article we have framed our analysis of trends in the mathematics 

education literature using Lakatos’s (1978) methodology of scientific research programmes. 

However, Lakatos’s account is not uncontested. The main critique comes from Feyerabend’s 

(1981, 1993) “anarchist theory of knowledge.” Feyerabend’s criticisms of Lakatos fall into two 

categories. First, he argued that Lakatos’s use of historical rational reconstructions as evidence 

was arbitrary in several different ways. He felt that Lakatos failed to justify (a) his decision 

only to reconstruct scientific episodes from a relatively restricted historical period (the last 200 

years); (b) his choice of the specific episodes to reconstruct, and (c) the actual methods by 

which he conducted his reconstruction. Second, Feyerabend suggested that there were no 

reasons to support Lakatos’s belief that his methodology of scientific research programmes 

could show that scientists behaved rationally in their choice of research programme. He wrote 

“we can only say that one programme was accepted while the other receded into the 

background; we cannot add that the acceptance was rational or that a rational development 

took place” (Feyerabend, 1981, p. 220). 

Is our use of Lakatos’s (1978) methodology of scientific research programmes 

vulnerable to Feyerabend’s (1981, 1993) criticisms? With respect to the first, our inclusive 

approach of analyzing every article published in ESM and JRME since they began publishing 

seems to provide a defense against the charge of arbitrariness. Whereas Lakatos chose specific 

historical incidents to analyze, we considered every article published by these journals, widely 

considered to be the two leading journals in the field. In view of ESM and JRME’s status, it 

seems probable that most of the field’s important trends are represented in the articles they 

publish. Nevertheless, we are vulnerable to at least one charge of arbitrariness, that our sample 

included only journals that publish in English. This important limitation should be borne in 

mind when considering our findings. 

Feyerabend’s (1981, 1993) second criticism does not seem to apply to our use of 

Lakatos’s (1978) work. Whereas Lakatos was keen to show that scientists are behaving 

rationally when they choose to move from a progressing to a degenerating research programme, 

we do not require this assumption. Our goal was not to argue that those who took part in the 

social turn were being either rational or irrational when they did so; rather we have used 

Lakatos’s methodology of scientific research programmes as a descriptive—not normative—

framework. In that sense, Feyerabend’s main criticisms of Lakatos do not apply to our analysis. 

However, our suggestion that mathematics education would benefit from greater interaction 
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between its research programmes does have a normative flavor. But Feyerabend (1993) 

advanced a similar argument. He wrote that 

 

Some of the most important formal properties of a theory are found by contrast, and not 

by analysis. A scientist who wishes to maximize the empirical content of the views he 

holds and who wants to understand them as clearly as he possibly can must therefore 

introduce other views; that is, he must adopt a pluralistic methodology. (p. 21). 

 

In sum, we have argued that mathematics education would benefit from greater interaction 

between the experimental psychology and sociocultural research programmes. This is a 

proposal that Feyerabend would have wholeheartedly endorsed. 
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