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Abstract 

In this paper we report three experiments demonstrating that a simple booklet containing self-

explanation training, designed to focus students’ attention on logical relationships within a 

mathematical proof, can significantly improve their proof comprehension.  Experiment 1 

demonstrates that students who receive the training generate higher quality explanations and 

perform better (effect size d = 0.950) on a comprehension test.  Experiment 2 demonstrates 

that self-explanation training increases students’ cognitive engagement and the frequency 

with which they move their attention around a proof.  Experiment 3 demonstrates that a 15-

minute in-lecture self-study intervention improves students’ proof comprehension, and that 

the effect persists over time. Thus we argue that ‘transition to proof’ courses should 

incorporate self-explanation training.  
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Self-Explanation Training Improves Proof Comprehension 

 

Introduction 

Proof is central to mathematics, and consequently mathematics educators have 

devoted substantial research effort toward understanding how students engage with proof and 

proving (for a review see Reid & Knipping, 2011).  Until recently, however, research has 

tended to focus on proof construction rather than the proof comprehension (Mejía-Ramos & 

Inglis, 2009).  This is potentially problematic because, in traditional instruction at least, 

undergraduates are often introduced to new mathematical ideas and techniques through 

reading proofs in class and in textbooks (Rav, 1999; Selden & Selden, 2003; Weber, 2004). 

It is thus of concern to see converging evidence that undergraduate students are not 

reliably able to judge whether a proof is valid or invalid (Alcock & Weber, 2005; Inglis & 

Alcock, 2012; Ko & Knuth, 2009, 2013; Selden & Selden, 2003; Weber, 2010).  Although 

researchers have proposed pedagogic strategies to address this issue (e.g., Leron, 1983; 

Rowland, 2001a, b), there is scant research on the efficacy of these strategies; what evidence 

does exist indicates that such approaches may be less effective than hoped (Fuller, Mejía-

Ramos, Weber, Samkoff, Rhoads, Doongaji, & Lew, 2011) or, in some cases, actually 

inferior to standard approaches (Roy, Alcock & Inglis, 2010).  In this paper we adapt a 

pedagogical technique – self-explanation training – that has been shown to be effective in 

other contexts (e.g., Chi, Bassok, Lewis, Reimann, & Glaser, 1989), and demonstrate that it 

facilitates comprehension of mathematical proofs.  
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Theoretical Background 

Research on proof comprehension 

It has long been of concern that some students do not understand what it means for an 

argument to constitute a mathematical proof.  Such students confuse the roles of evidence and 

proof, offering examples instead of deductive arguments (Chazan, 1993; Recio & Godino, 

2001).  They accept logically invalid deductions (Alcock & Weber, 2005; Ko & Knuth, 2009, 

2013) and even whole arguments (Selden & Selden, 2003; Weber, 2010).  They focus too 

much attention on surface features of an argument, over-valuing texts that contain large 

amounts of algebraic manipulation or that otherwise appear deductive (Harel & Sowder, 

1998; Healy & Hoyles, 2000; Segal, 2000), and concentrating on algebraic manipulations at 

the expense of attending to logical claims captured elsewhere in the text (Inglis & Alcock, 

2012; Selden & Selden, 2003).  As a consequence, some researchers have argued that 

students need to develop more mature proof schemes (Harel & Sowder, 1997; 2007) and need 

to be exposed to teaching designed specifically to facilitate this learning (Stylianides & 

Stylianides, 2009). 

More recently, however, attention has focused on whether these undesirable behaviors 

really indicate a fundamental misunderstanding of the relationship between evidence and 

proof, or whether they might be better understood as attempts to act appropriately that fail 

because the student lacks either the skill to construct a deductive argument or the will to 

thoroughly evaluate one (Inglis & Alcock, 2012).  It certainly seems that undergraduate 

students are often ineffective readers of mathematical texts: they tend to focus on worked 

examples without reading potentially helpful explanatory material, they take insufficient care 

to ensure that they understand technical terms, and even those with appropriate mathematical 

backgrounds and good general reading skills do not read mathematics well enough to be able 

to apply new information in closely related problems (Lithner, 2003; Shepherd, 2005; 
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Shepherd, Selden & Selden, 2012).  However, the fact that students often do not read 

effectively does not imply that they cannot do so, or that their standards of proof differ 

substantially from those of mathematicians.  Healy and Hoyles (2000), for instance, found 

that high school students often selected empirical arguments as being most like their own, but 

that most were aware of the limitations of these arguments.  Stylianides and Stylianides 

(2009) found similar awareness among pre-service teachers.  Segal (2000) found that during 

their first undergraduate year, students curtailed their tendency to accept empirical arguments 

as proofs, and Weber (2010) found that mathematics majors judged an empirical argument to 

be both invalid and unconvincing.   

Appropriate rejection of empirical arguments, of course, is not the same as 

appropriate evaluation of deductive arguments.  Segal’s (2000) participants, for instance, 

became more likely to accept ‘proofs’ that used general notation and appeared deductive; 

unfortunately, the same occurred for both a valid and an invalid proof with this appearance.  

Selden and Selden (2003), Inglis and Alcock (2012) and Weber (2009, 2010) all found that 

some undergraduate students performed poorly when evaluating even short purported proofs, 

for instance by failing to reject an argument that addressed only the converse of the target 

statement.  It could be that the problem here is fundamental and depressing.  Perhaps many 

students simply do not have the cognitive capacity to reason correctly about mathematical 

arguments. We do not believe that this is the case, and suggest that a detailed reading of this 

literature suggests an alternative possibility.   

First, Selden and Selden (2003) suggested that students focused too much on surface 

features of purported proofs.  Inglis and Alcock (2012) confirmed using eye tracking that 

undergraduates, compared with expert mathematicians, devoted more of their attention to 

algebraic parts of proofs and less to the surrounding text (in which logical claims are often 

made explicit).  Second, Weber (2009) reported that students rarely spent more than two 
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minutes evaluating an argument, and that some did not seem to consider it their responsibility 

to resolve any confusion that arose, or were willing to accept an argument that they did not 

find fully convincing or even in which they had found a logical flaw.  Weber (2010) reported 

that his participants made errors because they did not check whether assumptions used in a 

proof were appropriate and because they focused on correctness of assertions but not on 

principles used to deduce new assertions.  Inglis and Alcock (2012) confirmed (again using 

eye-tracking) that during proof comprehension attempts, undergraduates shifted their 

attention around less often than mathematicians; that mathematicians made significantly 

more moves from one line of a proof to another in a manner consistent with an attempt to 

understand the logical relationships between these lines.   

It could therefore be that students fail to identify logical errors simply because they do 

not read proofs very thoroughly; that they do have the capacity to reason correctly about 

mathematical arguments, and that the failures at this level are not of understanding but of 

execution.  In this case, as Inglis and Alcock (2012) suggested, considerable improvement 

might be possible with a relatively light-touch intervention that encourages students to 

conduct their reading more thoroughly.  In order to evaluate such an intervention, and to 

compare the rationales behind different interventions, it is helpful to clarify what we expect a 

reader to achieve by way of proof comprehension; we turn to this next. 

A theoretical model for testing proof comprehension 

Mejía-Ramos, Fuller, Weber, Rhoads, and Samkoff (2012) recently proposed a 

theoretical model of proof comprehension.  This model is built on the work of Conradie and 

Frith (2000) and Yang and Lin (2008), and is consistent with other comments by 

mathematicians on questions that one might set in order to establish whether a student has 

understood a proof (e.g., Cowen, 1991; Solow, 2005).  It comprises seven dimensions, the 

first of which (meaning of terms and statements) assesses the basic knowledge required to 
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correctly interpret technical terms and single statements.  The next (justification of claims) 

assesses comprehension of logical relationships among individual lines in a proof.  

Specifically, if a proof is understood as a series of statements A1, A2, ... An, B, where B is the 

to-be-proved theorem (Rav, 1999), then many of the steps Ai→Ai+1 require a warrant 

(Toulmin, 1958): a justification that allows the reader to conclude that Ai+1 follows logically 

from some subset of the preceding lines, together with agreed axioms, definitions or 

theorems.  As Weber and Alcock (2005) pointed out (see also Solow, 2005, p.15), not all of 

these warrants will be explicitly articulated in the proof text; some will be left for the reader 

to infer, and this dimension tests a reader’s ability to do so.  The third dimension (logical 

structure) assesses a similar skill in a different way, asking about logical dependence 

relationships between specific lines.  Four further dimensions – higher-level ideas, general 

method, application to examples, and identifying modular structure – assess understanding of 

holistic aspects of the proof’s structure.  All seven dimensions are listed in Table 1, together 

with samples of the question types that Mejía-Ramos et al. suggest are appropriate for testing 

each dimension. 

This model constitutes an important methodological contribution to the field, because 

it permits researchers to assess the success of a reading attempt, and thus to rigorously 

evaluate interventions that attempt to improve students’ proof comprehension.  It also permits 

theoretical discussion of the characteristics of earlier interventions, a point we turn to next.  
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Table 1. The seven dimensions for assessing undergraduate proof comprehension suggested 

by Mejía-Ramos et al. (2012). 

Dimension Definition Example question 

Meaning of terms and 

statements 

Justification of claims 

 

Logical structure 

 

Higher-level ideas 

 

General method 

 

 

Application to 

examples 

 

 

Identifying modular 

structure 

Understanding the meaning of symbols, 

terms and definitions. 

Understanding how new assertions in 

the proof follow from previous ones. 

Understanding the logical relationship 

between lines or components of a proof. 

Identifying a good summary of the 

overarching approach of the proof. 

Applying the methods within the proof 

to a different context. 

 

Using the ideas in the proof in terms of 

a specific example. 

 

 

Understanding the main components 

and modules within a proof and the 

logical relationship between them. 

What does the symbol ∃ mean? 

 

In the proof, which justification 

best explains why…? 

What is the logical relationship 

between lines (LX) and (LY)? 

Which of the following is the 

best summary of…? 

Could the method of the proof 

applied in line X be used to 

prove…? 

Using the logic of the proof, 

which best exemplifies why 

𝑥   =   5 is not a solution to 

𝑓(𝑥)   =   30? 

Which of the following explains 

why…was included in the 

proof? 
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Improving comprehension: changing the presentation 

Among attempts to improve students’ proof comprehension, one can distinguish two 

broad approaches: changing the presentation of the proof, and changing the way a student 

engages with it.  These approaches share an assumption that students need additional or 

different explanations in order to fully understand a typical proof, but they differ in their 

assumptions about who should provide these explanations.  When the presentation is 

changed, explanations are usually provided by the instructor, and in this section we review 

three theoretical suggestions that take this approach, together with empirical research 

investigating their efficacy. 

Leron (1983) suggested that instead of a standard linear presentation – proceeding 

from hypothesis to conclusion in a unidirectional manner – one might present structured 

proofs.  A structured proof is arranged in levels, with the main ideas and approach given at 

the top level, and subsequent levels giving details and justifications of each of the steps in the 

preceding levels. In terms of Mejía-Ramos et al.’s (2012) framework, a structured proof is 

designed to facilitate understanding of higher-level ideas and identifying modular structure, 

though it does so at the expense of separating some claims from their supporting data and 

warrants.  These changes are reflected in empirical research on the efficacy of structured 

proofs. Fuller et al. (2011) found that, compared to reading a traditional proof, students who 

read structured proofs were more successful at summarizing the key ideas of the proof, but 

that they performed slightly, albeit not significantly, worse on other aspects of proof 

comprehension.  

Rowland (2001) suggested (in the context of number theory) that instead of a fully 

general proof, one might present a generic proof.  In such a proof, operations and arguments 

are applied, not to general algebraic notation (as in traditional proofs), but to a generic 

example that is used throughout.  This generic example is chosen so that analogous 
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operations and arguments would apply to every other member of the general class under 

consideration.  In terms of Mejía-Ramos et al.’s framework, an entire generic proof may thus 

be understood as an application to an example.  One might also argue that a generic proof 

facilitates understanding of logical relationships of all types as they pertain to that example, 

but does so at the cost that the reader is responsible for thinking about the invariance of those 

relationships in the general case. Rowland reported on the use of generic proofs in classroom 

settings, and his comments reflect these issues: he noted that some trainee teachers were able 

to see such proofs as generic, but some were not, and some were too ready to generalize from 

specific examples without attention to which relationships were, indeed, invariant. 

Alcock and Wilkinson (2011) suggested that instead of a simple proof text, one might 

present an augmented text in the form of a computer-based e-Proof.  An e-Proof consists of a 

series of computer slides showing the theorem and whole proof, together with annotations 

that vary from slide to slide (lines or algebraic expressions might, for example, be highlighted 

using boxes, linked with arrows, or grayed out).  Each slide is accompanied by a replayable 

audio account explaining the relevant section, and an e-Proof is characterized by Alcock and 

Wilkinson as an attempt to capture the extra audio and visual explanations that a lecturer 

might give when presenting a proof.  In terms of Mejía-Ramos et al.’s framework, the audio 

commentary might naturally include information relating to meaning of terms and statements, 

and both the audio and the annotations might draw attention to justification of claims, logical 

structure, higher-level ideas and identifying modular structure.   

Roy et al. (2010) compared the understanding developed by students working with an 

e-Proof with that of students reading the un-augmented proof text for the same amount of 

time.  They found that those who studied the e-Proof did not retain their knowledge as well as 

those who read the un-augmented version.  Roy et al. suggested that this might be because e-

Proofs reduced the need for the reader to think in depth about the proof by reducing the 
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impetus to generate their own explanations.  This suggestion is obviously related to our 

earlier point: perhaps students can provide their own explanations and would perform better 

if allowed and encouraged to do so. 

As noted above, all three of these approaches involve instructor provision of different 

or extra explanations: a structured proof involves restructuring the proof text, a generic proof 

involves changing its content, and an e-Proof involves augmenting the proof with annotations 

and commentary.  Changing the presentation in such ways requires substantial instructor 

effort, and the underwhelming empirical results suggest that this may not be effort well spent.  

This suggestion is consistent with findings from the general education literature on example-

based learning: a meta-analysis by Wittwer and Renkl (2010) found that the benefits of 

adding additional instructional explanations is limited, and not necessarily more effective 

than supporting students to generate their own explanations. In the next section, we take up 

Roy et al.’s (2010) suggestion by considering approaches in which the extra or different 

explanations are generated not by an instructor but by the student.  

Improving comprehension: changing engagement 

The second broad approach to improving proof comprehension is to change a 

student’s engagement with a proof.  One way to do this is to provide self-explanation 

training, a strategy that has been shown to improve reading comprehension in other subject 

areas and in mathematics at lower levels.  This is the approach taken in our experiments, and 

we briefly review the relevant literature here. 

The term ‘self-explanation’ originated when Chi et al. (1989) asked undergraduate 

students to read chapters in a book on Newtonian mechanics.  Students were encouraged to 

create their own explanations of the material, and were subsequently given 19 problems on 

related content.  Chi et al. reported that the ‘good’ students (who had a mean success of 82% 

on the problems) produced more self-explanations – more interpretations of what had been 
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read that involved information and relationships beyond those literally contained in the text – 

than did the ‘poor’ students (who had a mean success of 46% on the problems).  The 

researchers raised the possibility that constructing self-explanations is one of the signatures 

of effective reading comprehension. 

Later work investigated whether students can be taught to self-explain.  Chi, de 

Leeuw, Chiu, and LaVancher (1994) found that eighth grade students who received self-

explanation training and then read a text on the circulatory system learned significantly more 

than students who were simply asked to read the text twice.  Similar results have since been 

found in other content domains such as history (Leinhardt, 1993), programming, and 

multimedia (Roy & Chi, 2005).  

Studies also indicate that self-explanation training might be helpful in mathematics 

(e.g., Aleven & Koedinger, 2002; Durkin, 2011). In Rittle-Johnson’s (2006) study, for 

instance, third- to fifth-grade students learned about solving unfamiliar types of problem 

concerning mathematical equivalence.  Rittle-Johnson used a  design in which the 

students either invented their own methods or were instructed in standard methods, and in 

which they either did or did not receive self-explanation training. In both immediate and 

delayed post-tests, students in the self-explanation groups showed significantly higher 

procedural accuracy and significantly higher scores on transfer problems.  

Wong, Lawson, and Keeves (2002) asked high-achieving 9th grade students to 

participate in sessions on circle theorems.  Students from both a self-explanation and a 

control group had individual think-aloud training, and those from the self-explanation group 

additionally heard recorded examples of self-explanations.  Each was then asked to apply 

their training to read a booklet on a particular geometry theorem and associated example; for 

those from the self-explanation group, the booklet contained additional self-explanation 

prompts.  In a follow-up session, participants took a post-test that required application of the 

2×2
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target theorem, and of other recently-reviewed circle theorems, to solve various problems. 

The results showed that the self-explanation group scored significantly higher on the post-

test, with the effect being particularly pronounced for far-transfer items that involved using 

multiple theorems, constructing new figures and developing representations for word 

problems.  

Of course, effective instruction might take many forms, and it is not obvious how 

self-explanation training should be linked with other forms of mathematical instruction.  

Matthews and Rittle-Johnson (2009), for instance, showed that giving children self-

explanation prompts alongside conceptual instruction was no more effective than giving the 

conceptual instruction alone.  Renkl (2002) argued that self-explanations are often faulty or 

otherwise inadequate, and developed an approach in which the learner does as much self-

explanation as possible but also has access to additional instructional explanations.  

Nevertheless, empirical results on self-explanation effects are compelling.  They indicate that 

self-explanation training can enhance students’ comprehension of mathematical material and 

of texts at the undergraduate level more broadly.  

Further, we believe there are reasons to anticipate that self-explanation training might 

be particularly effective in the domain of mathematical proof comprehension.  These rest 

upon the particular features of mathematical proofs (of the kind encountered in undergraduate 

mathematics) as compared with other texts.  Specifically, proof texts are extremely dense in 

deductive links (Mayans, 2004; Stewart & Tall, 1977): reading them requires one to 

reconstruct the author’s thought processes (Houston, 2009; Solow, 2005), but this should be 

possible because each claim (if it does not, for example, simply define a new object) will 

follow deductively from theorem premises, previous claims and agreed true results.  This is 

not the case in non-mathematical texts about other subjects, even in science.  In the biology 

texts used in some self-explanation studies (e.g., Chi et al., 1994; McNamara, Kintsch, 
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Songer & Kintsch, 1996), for instance, the material is primarily factual, and the order in 

which it is presented is not dictated by logical relationships between the claims that constitute 

the text.  One can certainly construct self-explanations about such material: a person with 

appropriate knowledge might well be able to construct reasonable explanations for biological 

phenomena based on analogy or abductive reasoning.  But one could not routinely deduce 

new valid statements from existing statements about such phenomena, or be certain purely by 

reference to logical reasoning that one’s inferred warrants were appropriate and did lead to 

deductively valid conclusions.  This means that proof texts might be particularly amenable to 

comprehension via self-explanation: a mathematically competent individual who looks for 

links within a proof will find unusually many links in an unusually simple form. 

In view of these considerations, and our knowledge of the difficulties students have 

when reading mathematical proofs, we hypothesized that self-explanation training would be 

an effective method of improving undergraduate students’ proof comprehension. Our primary 

goal in this paper is to test this suggestion experimentally.  In order to frame our empirical 

work, the next section reviews the methods by which reading processes and outcomes can be 

empirically investigated. 

 
Methodology 

Measures 

Learning outcome measures 

Studies on self-explanation effects usually seek to demonstrate increases in learning 

due to self-explanation effects by reporting outcome measures.  We take this approach, using 

proof comprehension tests constructed according to Mejía-Ramos et al.’s (2012) framework.  

In common with other self-explanation studies (e.g., Heijltjes, Van Gog & Paas, 2011; 

O’Reilly, Best, & McNamara, 2004; Ziegler & Stern, 2011), we administered these tests 

immediately after reading attempts and (in Experiment 3) in a delayed post-test.   
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Process measures: explanation quality 

Some studies additionally seek to provide insights into the mechanisms behind self-

explanation effects by reporting measures that capture some aspect of the reading process.  

Two such process measures are explanation quality (discussed in this section), and reading 

behavior as indexed by the loci of readers’ attention (discussed in the next).  

Some researchers interested in self-explanation effects, including Ainsworth and 

Burcham (2007), have studied explanation quality as a measure of what takes place during 

the reading process.  Explanation quality is typically documented by recording think-aloud 

protocols as individual students read a text, and by coding their utterances.  Ainsworth and 

Burcham used eight categories of utterances, which they also grouped into two 

supercategories: explanations and non-explanations.  Seven1 of their categories are listed in 

Table 2; because these were the categories used in Experiment 1, the definitions in the table 

are slightly adapted for the context of proof comprehension.  

Explanation quality can then be related to comprehension outcomes.  Ainsworth and 

Burcham showed that that students’ comprehension of a biology text was related to the types 

of explanation they generated: students who produced more false explanations scored lower 

on the comprehension test, and students who produced more positive monitoring and 

principle-based statements performed better.  In our context, and in relation to our suggestion 

above that one might expect proof texts to be particularly amenable to comprehension by 

self-explanation, we note that there is a relationship between this categorization of self-

explanations and the earlier discussion about assessing proof comprehension.  Specifically, a 

principle-based explanation might involve articulating the meanings of terms and statements 

                                                

1 Ainsworth and Burcham (2007) also included an eighth category, “elaborative explanations”, which 

constituted self-explanations using elaborated metaphors or analogies. We found no such instances in our data. 

In Table 2 we also include a “no comment” category of non-explanation. 
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or inferring a warrant, a goal-driven explanation is likely to capture some aspect of the 

holistic structure of the proof, and noticing coherence might involve either of these. 

 

Table 2. The categories of comments listed by Ainsworth and Burcham (p. 293; 2007), 

adapted slightly for the context of proof comprehension. 

 
Category Type Definition (in the context of proof comprehension) 

Principle-Based Explanation Participant gave an explanation based upon definitions, 

theorems or ideas not explicitly written in the proof, 

e.g., “...this is because, by the definition of triadic, ...” 

Goal-Driven Explanation Participant gave an explanation that related to the 

structure of the proof (how it is used in order to reach 

the goal of proving the theorem).  

Noticing Coherence Explanation Participant gave an explanation that related to an idea 

used earlier in the proof, e.g., “...this is because in line 

5 we introduced...” 

No Comment Non-explanation Participant spoke no words for the line. 

False Explanation Non-Explanation Participant gave an incorrect explanation. 

Paraphrasing Non-Explanation Participant simply repeated the line or part of the line 

using similar words or the same words. 

Positive Monitoring Non-Explanation Participant stated “I understand this”, “OK, this makes 

sense” or similar. 

Negative Monitoring Non-Explanation Participant stated “I don't understand this”, “How is 

this true?” or similar. 

 

 



 Self-Explanation Training Improves Proof Comprehension 17 

Process measures: reading behavior 

Another way to investigate the mechanisms behind self-explanation effects is to 

directly observe readers’ loci of attention.  Few studies have attempted this, although eye-

movement methods have been used extensively to study numerous other phenomena 

including reading (e.g., Rayner, 1998) and logical reasoning (e.g., Ball, Lucas, Miles & Gale, 

2003).  Eye-movement studies rely on the so-called eye-mind hypothesis (Just & Carpenter, 

1980), which states that gaze direction is closely related to attention location, especially 

during effortful tasks (e.g., Ball et al., 2003; Deubel & Schneider, 1996; Rayner, 2009).  

Measures used in such studies rely on the fact that eye movements during reading consist of 

fixations – stationary periods during which information is processed (typically lasting around 

150ms to 500ms) – and saccades – rapid moves to new locations, during which no 

information can be processed (e.g., Matin, 1974).  Records of eye movements consist of 

information on the duration and location of each fixation, and a variety of meaningful 

measures can be derived from these.   

First, longer fixations are associated with more effortful cognitive processing (see 

e.g., Just & Carpenter, 1976; Poole & Ball, 2006; Rayner, 1977), so mean fixation durations 

provide a measure of an individual’s cognitive engagement with a task: a higher mean 

fixation duration on a given location indicates a higher level of cognitive engagement with 

the information at that location. 

Second, fixation locations allow us to track the way in which an individual moves 

their attention around during a task.  It is less obvious how to use these data to differentiate 

reading behavior of relevance for proof comprehension, but Inglis and Alcock (2012) 

reported an approach in which they counted and compared the numbers of between-line 

saccades made by undergraduate students and by mathematicians.  Specifically, they counted 

all saccades that started with a fixation on one line of a purported proof and finished with a 
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fixation on another line (indicating that the reader has moved their attention from line to line, 

rather than simply reading along the current line).  Using this approach, they reported that 

mathematicians made significantly more between-line saccades than did students, indicating 

that expert readers move their attention around more than novices during proof 

comprehension attempts. 

In any such work, it is important to note that eye-movement data are noisy, making it 

dangerous to interpret any single fixation as having a particular meaning (Inglis & Alcock, 

2013) or otherwise to over-interpret a single sequence of eye movements.  However, any eye-

movement record contains data on hundreds of fixations (over 100 per minute in the data 

used in our studies), so these aggregate measures do provide a reliable way of comparing 

overall reading behavior both within and between participants.  We used both types of eye-

movement measure in Experiment 2. 

Research Design 

In the experiments reported in this paper, we asked three main questions. First, does 

studying self-explanation training improve students’ comprehension outcomes, as measured 

by comprehension tests?  Second, does studying self-explanation training change the process 

by which students read mathematical proofs?  Third, can self-explanation training be used in 

genuine pedagogical settings and, if so, will it lead to long-lasting gains in comprehension 

skills?  We now briefly summarize the designs of the three experiments reported in the 

remainder of this paper. 

In Experiment 1, we used an experimental design to investigate the effects of self-

explanation training on learning outcomes and on the nature of explanations produced by 

students. Specifically, we asked whether self-explanation training improves the quality of 

explanations students give and leads to improved proof comprehension. In Experiment 2, we 

used eye-tracking methods to investigate the effects of self-explanation training on reading 
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processes. In Experiment 3, we investigated the effects of self-explanation training in a 

genuine pedagogical setting and over a longer time period. The designs of all three studies 

are summarized in Figure 1, and are described in detail in the following sections. 
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Figure 1. An illustration showing the designs of the three experiments reported in this paper. 
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Experiment 1 

In Experiment 1 we investigated whether self-explanation training affects (a) the 

quality of explanations students give when reading a proof and (b) the level of resulting proof 

comprehension. To this end we conducted a true experiment by randomly allocating students 

into two conditions: those who received self-explanation training, and those who took part in 

a control activity.  

Methods 

Participants 

Participants were 76 mathematics undergraduates at Loughborough University, who 

took part in exchange for an £8 (about $13) stipend. All participants were studying 

mathematics in 3-year single- or joint-honors degree programs, meaning that at least half 

(and often all) of their time was taken up with proof-based mathematics courses. In order to 

investigate whether self-explanation training differentially influenced students with different 

levels of experience, we sampled from all three years of the degree program: participants 

were 26 students in their first year of study, 26 students in their second year of study and 24 

students in their third year of study. In order to determine whether there was a causal 

relationship between our intervention and any differences on our outcome measures, we 

randomly assigned each participant to either the control group (38 participants; 10, 15 and 13 

from Years 1, 2 and 3 respectively) or the self-explanation group (38 participants; 16, 9 and 

13 from Years 1, 2 and 3 respectively).  Participants took part individually in a quiet room. 

Materials 

Self-explanation training. 

The self-explanation training consisted of a series of computer slides adapted from 

earlier materials used by Bielaczyc, Pirolli, and Brown (1995) and Ainsworth and Burcham 

(2007). The slides explained the benefits of self-explanation training, and elucidated the key 
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principles: identifying key ideas in each line of a proof, and explaining each line in terms of 

previous ideas presented in the proof or in terms of previous knowledge.  The slides then 

demonstrated the self-explanation strategy via an example proof.  Finally, a practice proof 

was displayed and participants were asked to generate self-explanations in response to it. No 

feedback was given. The training slides are provided in the Appendix. Participants in the self-

explanation group took an average of 19.9 minutes (SD = 2.0 minutes) to work through the 

training materials.  Those in the control group were slightly quicker to complete a control 

activity, described below (16.8 minutes, SD = 1.49 minutes). 

Proof comprehension task. 

For the comprehension task, we used Mejía-Ramos et al.’s (2012, p. 8) proof – 

referred to here as Proof A and reproduced in the Appendix – that there exist infinitely many 

triadic primes (participants were also provided with definitions of monadic and triadic).  We 

were confident that all potential participants would possess the background knowledge 

required to successfully engage with this material because it assumes knowledge only of 

prime numbers, divisibility and routine algebraic manipulation.  

To assess participants’ success in comprehending this proof, we constructed a 14-item 

proof comprehension test using the questions suggested by Mejía-Ramos et al. (2012). In 

total, we chose two items for each of their seven dimensions of proof comprehension.  These 

questions are provided in the Appendix. The order of questions was randomized for each 

participant.   

Items on the proof comprehension test were allocated one, two or three points 

according to their complexity, giving a total possible score of 28. Details of the scoring 

scheme are given in the Supplementary Materials (available online). Participants’ responses 

were graded, using this scheme, by one of two mathematics postgraduate students, both of 

whom were naïve to the purpose of the experiment and blind to each participant’s group 
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assignment.  Once one of the graders had scored a paper, they gave it to the other to 

moderate. No disagreements about the assigned scores were highlighted by the graders. 

Procedure 

Throughout the experiment, all materials other than the comprehension test were 

displayed on a computer screen and all audio responses were recorded for subsequent 

analysis. The experiment had three phases. 

In the training phase, participants in the self-explanation group were given the self-

explanation training to study at their own pace.  Those in the control group were asked to 

study a passage on the history of the mathematics of right-angled triangles and to answer 

questions about it.  This ensured that participants in both groups had approximately equal 

time on task.  

In the reading phase, all participants were given Proof A to study silently and at their 

own pace. Once they had studied the proof to their satisfaction, they were given the proof 

again but with the first line highlighted. Control participants were asked to verbalize 

comments about the highlighted line that helped them understand the proof. Self-explanation 

participants were asked to do the same, using their training to guide them. Pressing the space 

bar moved the highlight to the next line of the proof.  

In the test phase, all participants were asked to complete the proof comprehension 

task on paper, with the proof still available for viewing. When participants had completed all 

parts of the experiment, which took between 20 and 55 minutes, they were thanked and 

dismissed. 

Results 

In this section we report three main results. First, we justify the use of a single 

measure of proof comprehension by analyzing the dimensionality of our proof 

comprehension test. Second, we report the effects of self-explanation training on the nature of 
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the participants’ verbal explanations. Third, we report the effects of self-explanation training 

on proof comprehension.  

The dimensionality of proof comprehension 

Recall that Mejia-Ramos et al. (2012) identified seven dimensions of proof 

comprehension. If these dimensions were independent, it would be problematic to sum 

participants’ scores on items from different dimensions, and therefore impossible to justify 

the use of an overall proof comprehension score for each participant. To address this issue we 

subjected participants’ scores to a Principle Components Analysis (PCA, Lorenzo-Seva & 

Ferrando, 2006). Cattell’s Scree Test indicated that a single factor should be extracted, 

suggesting that it is reasonable to treat proof comprehension as a one-dimensional construct. 

The split-half internal reliability of the test was .73, suggesting an acceptable level of internal 

reliability (e.g. Kline, 1999). This internal reliability figure suggests that around 45% of the 

variance in comprehension test scores involved knowledge/skills other than simple proof 

comprehension. This is in some sense unsurprising: clearly questions in any such test will 

implicitly draw to different extents upon a participants’ background knowledge and skills. 

Effect of Self-Explanation Training on the Nature of Explanations 

To investigate the effect of self-explanation training on the nature of students’ 

explanations, participants’ verbal comments during the test phase were coded using the 

scheme given in Table 2.  No comment, false explanation, paraphrasing, and positive and 

negative monitoring statements (those classified as non-explanations) have meanings directly 

analogous to those used in previous self-explanation studies.  We illustrate principle-based, 

goal-driven and noticing coherence statements (classified as explanations) in the 

mathematical context of our experiment now (L1 indicates a comment made about line 1, 

etc.).  
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First, the following two comments were classified as principle-based because they 

invoke definitions that are not explicitly written in the proof: 

(L1) “…so therefore we conclude that the product of two monadic numbers is 

again monadic because it satisfies that definition.” 

(L4) “I think the reason [it is] defined in this way is because it takes the form of a 

triadic number, um, 4k + 3, as we see, but instead of using k, we’ve replaced it 

using the product of p2, p3, p4 through to pn then plus…3.” 

Second, the following comment was classified as goal-driven because it explains why setting 

up M as triadic helps reach the goal of proving the theorem: 

(L8) “So this proves that M must be a monadic, which is a contradiction to the 

initial statement, explaining why we set up where M was triadic.” 

Finally, the following comment was classified as noticing coherence because it explains a 

result by relating it back to information from earlier lines:  

(L6) “Okay, so now we’ve just, well I’ve just, I think I just said no triadic primes 

can divide M. And so, from what we’ve shown from [line] four and [line] five, 

you can see that M can’t be divided by any of the other triadic primes.” 

We compared the median number of each type of comment given by students in each 

group, shown in Figure 2, using a series of Bonferroni-corrected Mann Whitney U tests. We 

found that participants in the self-explanation group gave significantly more explanations; 

that is, they gave more comments categorized as principle-based, U = 386, p < .001, noticing 

coherence, U = 399, p = .001, or goal-driven, U = 407, p = .001. Indeed, they gave an average 

of 11.5 explanations of these types, whereas those in the control group gave an average of 

5.8, t(52.5) = 4.434, p < .001, d = 1.017. In particular, participants in the self-explanation 

group gave an average of 6.0 principle-based explanations, whereas those in the control 
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group gave an average of 3.2, indicating that those who received the training inferred 

approximately twice as many implicit warrants as those who did not. 

Figure 2. The mean number of instances of each type of comment, separated by 

condition. Error bars show ±1SE of the mean. 

 

Participants in the self-explanation group also gave significantly fewer non-

explanations, in particular fewer that were categorized as positive monitoring, U = 400, p < 

.001 and negative monitoring, U = 440, p = .002. The between-groups differences in the 

remaining categories (all non-explanations) did not reach significance. Overall, these results 

indicate that receiving self-explanation training increased both the number and proportion of 

high quality explanations given by participants during their proof comprehension attempts. 

Effect of self-explanation training on proof comprehension outcomes 

To investigate the effect of self-explanation training on proof comprehension, 

participants’ proof comprehension scores were subjected to an ANCOVA with one between-
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subjects factor (condition: self-explanation training, control). Because the time participants 

spent studying the proof was correlated with their proof comprehension scores, r = .439, p < 

.001, we included proof study time as a covariate. This analysis revealed a significant effect 

of condition, F(1,76) = 13.315, p < .001, ηp
2 = .154. Those who received self-explanation 

training scored an average of 18.2 (SD = 4.2) on the comprehension test; those who did not 

scored an average of 14.2 (SD = 4.0). This difference corresponds to a very large effect size, 

d = 0.950. Because we included study time as a covariate, this difference cannot be accounted 

for by the groups spending different amounts of time studying the proof (a similar result was 

found when time was not included as a covariate, t(74) = 4.142, p < .001).  

Figure 3. The mean score on the proof comprehension test, separated by condition and year 

group. Error bars show ±1SE of the mean. 

 

We also explored whether the effect of self-explanation training differed by year of 

study. Mean scores for each year group in the two conditions are shown in Figure 3. A 3 

(year) × 2 (condition) ANCOVA (again with time as the covariate) revealed, unsurprisingly, 

a main effect of year, F(2, 69) = 3.456, p = .037, with those in Year 3 (M = 17.8, SD = 4.2) 
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outperforming those in Years 2 (M = 15.8, SD = 5.2) and 1 (M = 14.9, SD = 3.9). 

Importantly, however, there was no significant year-by-condition interaction, p > .2, 

indicating that the self-explanation training did not appear to substantially benefit one year 

group more than any other. 

Summary and discussion 

Experiment 1 investigated the suggestion by Inglis and Alcock (2012) that self-

explanation training might lead to an increase in proof comprehension. We found that, 

compared with those in the control group, participants who had received the self-explanation 

training generated higher quality explanations and performed on average performed almost 

one standard deviation higher on the comprehension test. Our analysis ruled out the 

possibility that this finding was due to between-group differences in the length of time spent 

studying the proof, suggesting that it was due to the higher-quality reading by those in the 

self-explanation group. Because we randomly allocated participants to groups, our study was 

a true experiment, so these results demonstrate a causal relationship between receiving self-

explanation training and better subsequent proof comprehension. 

Experiment 2 

Experiment 1 focused on the influence of self-explanation training on the nature of 

students’ explanations, and on their consequent learning outcomes.  In Experiment 2 we 

directly investigated the impact of self-explanation training on actual reading processes when 

participants were not required to verbalize their explanations. To this end we recorded 

students’ eye-movements as they read proofs before and after receiving self-explanation 

training.  As discussed in the Methodology section, eye tracking allows the nature and 

location of attention to be studied while dispensing with the requirement that participants 

articulate their self-explanations out loud (cf. Inglis & Alcock, 2012).  This approach 
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therefore put participants in conditions more similar to those they would encounter when 

independently studying a proof for the first time.   

We addressed three main questions.  First (as in Experiment 1), does self-explanation 

training improve students’ proof comprehension?  Second, does self-explanation training 

change the level of cognitive engagement with mathematical proofs, as measured by mean 

fixation durations? Third, does self-explanation training increase the extent to which students 

attend to the logical relationships in proofs, as measured by the number of between-line eye 

movements?  

Because there are large individual differences in eye-movement measures (Rayner, 

1998), we opted to increase statistical power by adopting a within-subjects approach.  

Specifically, we investigated whether self-explanation training changed individual 

participants’ behaviors by comparing their eye movements before and after they had received 

either self-explanation training or a control activity. If self-explanation training is an effective 

method, we would expect students who had received it to engage more deeply with the text of 

mathematical proofs and to attend more to logical relationships.  In other words, we would 

expect students who receive self-explanation training to subsequently show longer mean 

fixation durations and make more between-line saccades. A summary of the experimental 

design is shown in Figure 1. 

Methods 

Participants 

Participants were 32 undergraduate students studying for mathematics degrees at 

Loughborough University, who took part in exchange for an £8 (about $13) stipend (none of 

these participants had taken part in Experiment 1). The participants were tested on an 

individual basis in a research lab and were randomly assigned to one of four experimental 
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groups (eight participants per group).  Because of recording problems in four cases, data from 

28 participants were included in the analysis.  

Materials 

The self-explanation slides and control-group passage on the history of right-angled 

triangles were the same as those used in Experiment 1. Two proofs were used: Proof B and 

Proof C (given in the Appendix).  For each proof, we constructed a 10-item multiple-choice 

proof comprehension test, again based on the Mejía-Ramos et al. (2012) framework (the test 

is provided in the Supplementary Materials).  The order of questions was randomized for 

each participant, and each item was allocated 1 point, giving a maximum possible score of 

10.   

Procedure 

Experiment 2 had three phases.  In Phase 1, each participant read either Proof B or 

Proof C on a screen and answered the corresponding comprehension test on paper (with the 

proof still visible).  In Phase 2, each participant read either the self-explanation materials or 

the passage on the history of right-angled triangles.  In Phase 3, each participant read and 

answered questions on the proof they had not seen in Phase 1. 

Participants’ eye movements were recorded using a Tobii T120 eye tracker set to 

sample at 60Hz. This is a remote eye tracker that consists of two hidden binocular infrared 

cameras underneath a 17-inch TFT monitor. Stimuli are displayed on a screen that 

participants view (without head restriction) from approximately 60 cm away. For each 

participant, prior to the start of the study the eye tracker was calibrated with a 9-point display. 

This setup is typical for eye-movement studies (e.g., Inglis & Alcock, 2012). 

Participants completed the study at their own pace; as before, they moved through the 

self-explanation training or history-of-triangles passage by clicking a mouse button to 

proceed to the next slide. The experimenter sat in the room; participants were told that he was 
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there only to rectify any technical issues and to provide materials. Once participants had 

completed all parts of the experiment, which took between 20 minutes and 48 minutes, they 

were thanked and dismissed. 

Results 

We report the results of the experiment in three sections. First we consider the effect 

of self-explanation training on proof comprehension scores. Second, we investigate whether 

self-explanation training affected students’ cognitive engagement. Finally, we look at the 

effect of self-explanation training on students’ attention movements. In each case we 

analyzed the dependent measure from participants’ reading of their second proof using an 

ANCOVA with two between-subject factors – group (self-explanation training, control 

activity) and proof order (Proof B read second, Proof C read second) – and one covariate – 

the dependent measure from participants’ reading of the first proof. This structure allowed us 

to control for individual differences in eye-movement behavior while maximizing statistical 

power (Van Breukelen, 2006).  

The Effect of Self-Explanation Training on Proof Comprehension 

There was no significant difference between the mean times the two groups spent 

reading either of the proofs, ps < .1. To investigate the change self-explanation training 

produced in proof comprehension, we subjected the proof comprehension scores from the 

second reading attempt to an ANCOVA with two between-subjects factors (condition: self-

explanation, control; proof read second: Proof B, Proof C), and one covariate (proof 

comprehension scores from the first reading attempt). The results showed a main effect of 

condition, F(1,27) = 8.850, p = .006, ηp
2=0.247, but no significant effect of proof order and 

no significant condition-by-proof-order interaction, both Fs < 1. Those in the self-explanation 

condition achieved a mean comprehension score of 7.56 (SD = 1.9), compared to 5.56 (SD = 
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1.5) for those in the control condition. These results therefore replicate the finding from 

Experiment 1 that self-explanation training improves proof comprehension performance. 

The Effect of Self-Explanation Training on Cognitive Effort 

To investigate the effects of self-explanation training on cognitive effort, we used 

mean fixation durations as an index (longer fixations are associated with more effortful 

cognitive processing; see e.g., Duchowski, 2007; Inglis & Alcock, 2012; Just & Carpenter, 

1976; Poole & Ball, 2006; Rayner, 1977).  Mean fixation durations for the second reading 

attempt were subjected to an ANCOVA with two between-subjects factors (condition: self-

explanation training, control; proof read second: Proof B, Proof C).  Mean fixation durations 

for the proofs read first were included as a covariate because we would expect large 

individual differences in this measure. In other words, we would expect that a student’s effort 

while reading the second proof would be strongly related to their effort while reading the 

first; and we are interested in the change in effort. The analysis revealed a significant main 

effect of condition, F(1,23) = 14.234, p = .001, ηp
2 = .382.  Those who received self-

explanation training had average mean fixation durations of 301ms (SD = 33.5) while reading 

their second proof; those who did not had average mean fixation durations of 276ms (SD = 

30.0).  There was no significant main effect of proof order and no significant condition-by-

proof-order interaction (ps > .3).  

Because the only significant effect was that of condition, we can conclude that the 

self-explanation training caused changes in reading behavior (it was not the case, for 

instance, that it interacted in a more complex way with the text, causing greater changes for 

one proof than for the other).  These findings are consistent with our prediction that self-

explanation training would lead to deeper engagement with mathematical proofs. 



 Self-Explanation Training Improves Proof Comprehension 33 

Effect of Self-Explanation Training on Between-Line Transitions 

To investigate the effects of self-explanation training on attention to logical 

relationships within a proof, we studied the way in which participants moved their attention 

around during their proof comprehension attempts.  Specifically, we counted the number of 

between-line saccades in their eye-movement records; that is, the number of times they 

moved their attention from one line of the proof to another.  An ANCOVA was conducted on 

the numbers of between-line saccades during the second proof reading attempt, with two 

between-subjects factors (condition: self-explanation training, control; proof read second: 

Proof B, Proof C), and two covariates (number of between-line saccades made during the 

first proof reading attempt, and the overall duration of the second proof reading attempt). The 

overall duration of the reading attempt was included as a covariate because we would expect 

a longer reading time to correspond to more between-line transitions, and we were interested 

in changes in transition behavior over and above this. 

The analysis revealed a significant effect of condition, F(1,22) = 10.394, p = .004, ηp
2 

= 0.321, showing that self-explanation training lead students to make more between-line 

transitions.  It also revealed a significant effect of proof order, F(1,22) = 8.449, p = .008, ηp
2 

= 0.277, indicating, perhaps unsurprisingly, that the proof itself influenced reading behavior 

(there were significantly more between-line saccades for Proof C than for Proof B).  There 

was, however, no significant interaction between condition and proof order, p = .742, 

indicating that self-explanation training increased the number of between-line transitions for 

both proofs.  Figure 4 shows the mean numbers of between-line transitions made by students 

for their second proof, split by condition.   
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Figure 4: The mean total number of between-line transitions for second proof read, split by 

condition. Error bars show ±1SE of the mean. 

 
Because the total reading time for the second proof was included as a covariate, we 

can rule out the possibility that self-explanation training merely increases the time a student 

spends reading a proof (and therefore the number of between-line saccades). Instead, these 

findings are consistent with our prediction that self-explanation training would encourage 

students to search for the logical connections while reading proofs. 

 

Experiment 3 

Experiments 1 and 2 showed that self-explanation training has positive effects on both 

reading processes and learning outcomes, but they did so under lab conditions, and only for 

proofs read immediately after self-explanation training.  In this final experiment, we 

investigated whether our short self-explanation training materials could improve proof 

comprehension in a genuine pedagogical setting. Because there is evidence from other 

contexts that self-explanation training effects can persist over time (e.g. O’Reilly, Best, & 
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McNamara, 2004; Rittle-Johnson, 2004), we also asked whether our training materials had 

lasting effects on students’ proof comprehension skills. 

Method 

Participants 

Participants were first-year undergraduate mathematics students in a calculus course 

at Loughborough University (none of these participants had taken part in Experiment 1 or 

Experiment 2). In England, students begin to specialize at the age of 16, studying only three 

or four subjects between 16 and 18 (for some, two of these subjects will be mathematics and 

further mathematics).  Such students study differential and integral calculus, roughly 

equivalent to the material in typical Calculus I and Calculus II courses in a US 

college/university.  The students who took part in Experiment 3 were all studying 

mathematics as either a single-honors or joint-honors program at university, meaning that at 

least half (and perhaps all) of their time was taken up with mathematics courses. The 

Loughborough calculus course covers advanced techniques in differentiation and integration, 

together with associated formal definitions and an introduction to limits.  Thus, students who 

took part in this experiment would be roughly equivalent in their mathematical experience to 

US sophomore mathematics majors. 

Participants took part during two normal scheduled lectures, 20 days apart.  A total of 

139 students took part in the first session and 122 in the other; we analyzed data only from 

those 107 who were present in both. Students were offered the opportunity of opting out of 

the study, but none decided to withdraw.  

Materials 

 Self-explanation and control materials 

 The self-explanation training provided was the same in structure as that used in 

Experiments 1 and 2. However, the materials in this experiment were provided in a paper 
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booklet rather than on a screen, and the example proof and the practice proof were changed in 

order that the self-explanation group did not spend extra lecture time studying calculus 

proofs.  The replacement example proof and practice proof are provided in the 

Supplementary Materials. 

 The control materials were also provided in a paper booklet, which this time consisted 

of information on time management (for ethical reasons we wanted to ensure that both groups 

would spend lecture time studying material relevant to study skills for their course). The 

booklet asked students to provide written answers to questions on their current time 

management (e.g., How long do you spend working on tutorial sheets each week? How many 

hours of lectures do you attend each week?), to read information on how to improve their 

time management, and to provide written answers to final questions on how they thought they 

could apply the information provided. 

 Proof comprehension tasks 

 Experiment 3 used Proof B and the associated multiple-choice questions from 

Experiment 2, and Proof A from Experiment 1 along with a newly-constructed 10-item 

multiple-choice proof comprehension test, given in the Supplementary Materials. Again, the 

order of the comprehension test questions was randomized for each participant, and each item 

was allocated one point to give a maximum total score of 10 for each proof. 

Procedure 

The experiment took place during two scheduled lectures in the first semester of the 

academic year.  Participants were split into a control group (54 participants) and a self-

explanation group (53 participants) based on their randomly-assigned student identification 

numbers (even identification numbers in the control group and odd identification numbers in 

the self-explanation group).  
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In the first lecture, those in the control group studied the time management booklet 

while those in the self-explanation group studied the self-explanation training booklet. As a 

post-test, both groups then read and answered questions on Proof B.  Participants worked 

individually in silence, and had 15 minutes for each task. 

In the second lecture (twenty days later), as a delayed post-test, both groups read and 

answered questions on Proof A.  Then participants who had previously received the self-

explanation training booklet studied the time management booklet, and vice versa.  Again 

participants worked individually in silence, and had 15 minutes for each task. The design of 

the experiment is summarized in Figure 1. 

After the testing and data analysis was complete, students were able to access all 

materials, including answers to the multiple-choice questions, via the calculus course page in 

the University’s virtual learning environment. The course page also provided links to further 

information on time management, and to a feedback document explaining the results of the 

experiment and offering advice on the implications of these results for undergraduate 

mathematics students. 

Results 

As in Experiment 1, we investigated the dimensionality of the comprehension tests 

used in Experiment 3 (this analysis was omitted in Experiment 2 because the sample size was 

insufficient for a PCA to be conducted). PCAs indicated that, in both cases, a single factor 

should be extracted, suggesting again that it is reasonable to treat proof comprehension as a 

one-dimensional construct. Next we calculated the split-half reliability coefficients for each 

test. At .637 and .694 respectively, they were slightly lower than the coefficient found in 

Experiment 1, presumably because of the reduced test length (necessary due to the practical 

constraints of the classroom context).  
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The mean scores of the two groups on the proof comprehension post-test and delayed 

post-test are shown in Figure 4. These data were subjected to an ANOVA with one within-

subjects factor (time: post-test, delayed post-test) and one between-subjects factor (condition: 

self-explanation, control). This analysis showed a main effect of condition, F(1,105) = 6.024, 

p = .016, ηp
2 = 0.054, but no significant effect of time and no interaction between condition 

and time, F < 1 in both cases. The differences corresponded to effect sizes of d = 0.410 at 

post-test and d = 0.350 at delayed post-test. 

These results show that self-explanation training in a typical pedagogical environment 

improves proof comprehension significantly in the short term, and has lasting effects. 

Figure 4: The mean comprehension test scores at post-test and delayed post-test, split by 

condition. 

 

Discussion 

Pedagogical Implications 

The collective results of our three experiments show that self-explanation training 

improves the quality of students’ reading of mathematical proofs, that it leads to increased 
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proof comprehension, and that this effect persists over time.  These results have an obvious 

and straightforward pedagogical implication: self-explanation training should be incorporated 

in the teaching and learning of mathematical proof at the undergraduate level.  We also 

believe that both mathematics educators and instructors should be encouraged by these 

findings, for at least two reasons.   

First, mathematics educators may note that our results are consistent with the 

suggestion that students fail to identify logical errors in proofs simply because they do not 

read very thoroughly; that students do have the capacity to reason correctly about 

mathematical arguments, and that the failures at this level are not of understanding but of 

execution.  One could interpret this negatively (students are lazy and do not read carefully) 

but we believe that this would be a mistake, and that our results call for optimism.  Although 

students apparently do not read as well as they might, they have capacity for considerable 

improvement without the need for extensive instruction directed at changing their beliefs 

about proof.  Perhaps all that many students need is encouragement to believe that they can 

take responsibility for checking deductions and for remedying their own confusion (cf. 

Weber, 2009). 

Second, instructors may note that self-explanation training is generic: it directs the 

student to explain ideas within a proof in terms of previous ideas from the theorem/proof and 

in terms of their own knowledge; it does not specify what form these explanations should 

take, and it does not include any prompts specific to a particular proof.  It is also short, taking 

only 15-20 minutes of individual study. This contrasts favorably with pedagogical 

approaches in which self-explanations are prompted in the moment by an instructor, and 

means that its implementation can be very resource-light.  Furthermore, unlike approaches 

that involve changing the presentation of many individual proofs (Alcock & Wilkinson, 

2011; Leron, 1983; Rowland, 2001), it requires minimal instructor time, because it focuses on 
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changing not the presentation but the engagement, by training students to interact effectively 

with standard instructional materials.  This is not to say that proof presentation is 

unimportant: there are various factors that should arguably be considered in any written 

instructional presentation (Alcock & Inglis, 2010; Lai, Weber & Mejía-Ramos, 2012; Weber, 

2012).  But it does mean that there might be no need to invest large amounts of time and 

effort in attempting to perfect instructional resources; it might instead be more effective to 

teach students to function better as independent learners. 

Our results have particular potential relevance for modern educational environments, 

in which both flexible online learning (e.g., Allen & Seaman, 2011) and peer instruction (e.g., 

Crouch & Mazur, 2001; Slavich & Zimbardo, 2012) are increasingly common.  Under such 

models of education the learner has substantial responsibility for digesting written 

information, either alone or in collaboration with other students.  There is reason to be 

concerned about the extent to which mathematics can be taught effectively when there is 

minimal student-instructor interaction – drop-out rates in online mathematics courses are 

higher than in comparable face-to-face mathematics courses and higher than in online courses 

in other disciplines (Mensch, 2010; Smith & Ferguson, 2005; Xu & Jaggers, 2011).  But the 

pace of change is fast and the direction is not likely to alter, so it will be appropriate for all 

instructors and institutions to consider how best to prepare students so that they become 

effective independent learners.  In mathematics, self-explanation training might well be a 

valuable part of this preparation. Future research could productively consider whether self-

explanation training materials could be effective in distance learning contexts, and if so how 

they could best be integrated into online courses. 

Implications for Research 

In the Theoretical Background section, we reviewed research showing that students 

sometimes appear not to understand what constitutes mathematical proof and that their 
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reading is often ineffective.  We argued, however, that a careful reading of a number of 

studies indicates that students may fail to appropriately evaluate deductive arguments not 

because they lack the cognitive capacity to reason correctly, but because they do not read 

proofs very thoroughly.  We suggested that if this were the case then considerable 

improvement might be possible via self-explanation training. We reviewed evidence on the 

efficacy of this approach in higher education and in school-level mathematics, and argued 

that self-explanation training is theoretically well aligned with the particular requirements of 

proof comprehension because the density of deductive links within a proof text mean that 

explanations are there to be inferred.  

We set out to test this theoretical account experimentally, and our results indicate that 

this argument was reasonable.  We saw measurable changes in reading behavior: students 

exposed to self-explanation training were found (in Experiment 2) to invest more cognitive 

effort in their reading, and to read more in the manner of mathematicians (cf. Inglis & 

Alcock, 2012) in the sense that they moved their attention around more during 

comprehension attempts.  They were found (in Experiment 1) to generate higher-quality 

explanations: compared with those in the control condition, students exposed to self-

explanation training generated approximately twice as many explanations that involved 

inferring implicit warrants or otherwise commenting upon the logical relationships among 

lines in a proof.  And these behavioral changes led to desirable learning outcomes: self-

explanation training led to better proof comprehension. 

Further, the high effect sizes we saw for differences in comprehension scores are 

consistent with our suggestion that proof texts might be particularly amenable to self-

explanation.  This suggests a first follow-up question for future theoretically-driven 

investigation: Is self-explanation indeed more effective for texts that have a higher density of 

deductive links?  Answering this would present a methodological challenge, since it is far 



 Self-Explanation Training Improves Proof Comprehension 42 

from obvious how one might construct comparable comprehension tests for different types of 

material. Asking for direct recall, for instance, would not function in the same way for a 

proof as it might for a primarily factual text, because recall of three facts in a random order 

might constitute evidence of relevant knowledge, but recall of three lines of a proof in a 

random order would not constitute evidence of proof comprehension: a proof functions as a 

unified logical entity in the sense that its components get an important part of their meaning 

from their relationships with each other, so order should not be violated (cf. Mayans, 2004).  

One way around this might be to use within-subjects designs such as that used here in 

Experiment 2, so that the same person’s scores could be compared for different tests on 

different texts.  In conjunction with such a study, it might also be interesting to consider 

different prompt types in addition to self-explanation training.  For instance, we might ask 

whether students read differently when they are told that they will be tested for recall as 

opposed to comprehension. 

Taking the research in a different direction, one might focus less on the text and more 

on the student, asking whether self-explanation training has different effects for different 

student groups.  Our investigations made only a nod in this direction, by including year group 

as a factor in Experiment 1.  We did not find a difference in efficacy for students of different 

year groups, but it remains the case that students with different initial capabilities on some 

other measure might benefit to a greater or lesser degree from self-explanation training – we 

would expect to find ‘good’ and ‘poor’ students in each year group, for instance.  Indeed, this 

makes for an interesting research question, because it is not obvious who would benefit more.  

Perhaps ‘good’ students are already good readers in the sense that they already employ self-

explanation skills, so that self-explanation training would not generate much change in their 

behavior; in this case, we might expect that ‘poor’ students would see greater gains.  On the 

other hand, perhaps ‘good’ students have good background knowledge and logical reasoning 



 Self-Explanation Training Improves Proof Comprehension 43 

skills, but do not employ these so well as they might, so that self-explanation training would 

teach them to put their knowledge to more effective use; in this case, we might expect that 

‘good’ students would see greater gains.  Understanding such effects, in either case, would be 

useful both theoretically and for designers of undergraduate mathematics programs. 

Finally, a broader question is that of the effects of self-explanation training on actual 

study strategies. Although we have shown that the training improves comprehension, it is 

unclear whether the training led the students in Experiment 3 to change their study strategies 

between the two tests.  We do not know whether self-explanation effects are limited to 

individual proofs, or whether they might extend to students’ day-to-day work with longer and 

more varied types of mathematical material such as textbooks and lecture notes. 

We do, however, have reason to believe that mathematics educators need not be too 

angst-ridden about students’ failures to engage effectively with proofs.  Our results support 

the view that these failures are due not to some inherent intellectual incapacity.  They 

indicate that undergraduate students do have at least some of the skills and understanding 

they need in order to read proofs effectively, and that a light-touch intervention can lead to 

better mobilization of these skills and thus to considerably better proof comprehension.   
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Appendices 

Self-explanation training slides 

Slide 1 

Self-Explanation 

• The “self-explanation” strategy has been found to enhance problem solving and 

comprehension in learners. 

• To improve your understanding of a proof, there are a series of techniques you should 

apply after reading each line: 

o Try to identify and elaborate the main ideas of the proof. 

o Attempt to explain each line presented to you in terms of previous ideas, by 

saying aloud any self-explanations you make. These may be ideas from 

previous theorems/proofs or ideas from your own knowledge of the topic area. 

o You should raise any questions that may arise when presented with new 

information that may contradict your current understanding. 

 

Slide 2 

• Before proceeding to the next line of the proof you should ask yourself the following: 

o Do I understand the ideas used in that line? 

o Do I understand why that idea has been used? 

o How does this idea link to other ideas in the proof/other theorems/prior 

knowledge that I may have? 

o Does the self-explanation I have generated help to answer the questions that I 

am asking? 

• On the following slide, you will find an example of possible self-explanations generated 

by students when trying to understand a proof presented to them. 
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• Please read the example carefully in order to help you understand how to use this 

strategy in your own learning. 

 

Slide 3 

An Example 

Theorem: 3.14 is a rational number 

Proof: To check that x = 3.14 is a rational number, it is enough to find two integers p and q 

with   

q ≠ 0 such that x = p/q. 

Choose p = 314 and q = 100. 

Both 314 and 100 are integers and 100 ≠ 0. 

Thus, by definition, 3.14 is a rational number.    

• After reading this proof, one student made the following self-explanations: 

o To prove something is rational, we need to use the definition of rational numbers, 

which is used in the proof. 

o q ≠ 0 because otherwise x would not exist. 

o p = 314 and q = 100 because 314/100 = 3.14. 

o Since p and q satisfy the definition of an integer, 314/100 = 3.14 satisfies the 

definition of a rational number. 

o 3.14 therefore must be a rational number. 
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Slide 4 

• You must be aware that the self-explanation strategy is not the same as monitoring or 

paraphrasing. These two methods will not help your learning to the same extent as self-

explanation. 

Paraphrasing 

“Both p and q have to be positive or negative whole numbers” 

• There is no self-explanation in this statement. No additional information is added or 

linked. The student merely uses different words to describe the word “integer”. You 

should avoid using such paraphrasing during your own text comprehension. Paraphrasing 

will not help your understanding of the text as much as self-explanation will. 

 

Slide 5 

Monitoring 

“OK, I understand the proof sets p = 314 and q = 100.” 

• This statement simply shows the student’s thought process. It is not the same as self-

explanation where the student relates the sentence to additional information in the text or 

prior knowledge. Please concentrate on self-explanation rather than monitoring. 

• A possible self-explanation of the same sentence would be: 

“OK, p = 314 and q = 100 because these are integers and p/q = x = 3.14. The proof could 

also have used p = 628 and q = 200.” 

• In this example the student identifies and elaborates the main ideas in the text. They use 

information that has already been presented to them to help with their understanding of 

how the proof is logically connected. 

• This is the approach you should take after reading every line of a proof in order to 

improve your understanding of the material. 
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Slide 6 

Practice 

• Please now read this short proof and self-explain each line using the training you have 

been given. 

Theorem: (0,∞) is not bounded. 

Proof:  Assume that the theorem is false and that (0,∞) is bounded. 

Therefore, by assumption, there exists a constant C > 0 such that (0,∞) ⊂ [-C,C]. 

Note, C + 1 > 0 thus C + 1 ∈ [-C,C]. 

This contradicts the assumption that (0,∞) ⊂ [-C,C]. 

Thus (0,∞) is not bounded. 
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Proofs 

Proof A 

Theorem: There are infinitely many triadic primes. 

Proof: Consider a product of two monadic numbers: (4j  +  1)  (4k  +  1)    

=  4j  ⋅  4k  +  4j  +  4k  +  1    

=  4(4jk  +  j  +  k)  +1  

which is again monadic. 

Similarly, the product of any number of monadic numbers is monadic. 

Now, assume the theorem is false, so there are only finitely many triadic primes, say  

p1,  p2,…,pn.  

Let M  =  4p2…pn  +  3, where p1  =  3. 

p2,  p3,…,pn  do not divide M as they leave a remainder of 3, and 3 does not divide M as 

it does not divide 4p2,…,pn. 

We conclude that no triadic prime divides M. 

Also, 2 does not divide M since M is odd. 

Thus all of M’s prime factors are monadic, hence M itself must be monadic. 

But M is clearly triadic, a contradiction.       

 
Proof B 

Theorem: If n∈ℤ and n  >  0, then n is even if and only if 3n2  +  8 is even. 

Proof: Let n∈ℤ and n  >  0. 

  By definition, if n is even then ∃k∈ℤ such that n  =  2k. 

  Then, 3n2  +  8  =  3(2k)2  +  8  =  12k2  +  8  =  2(6k2  +  4). 

  Therefore, 3n2  +  8 is even. 

  Now, assume n is odd and we will show that 3n2  +  8 is odd. 
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  By definition, if n is odd ∃j∈ℤ such that n  =  2j  +  1. 

  Then, 3n2  +  8  =  3(2j  +  1)2  +  8  =  3(4j2  +  4a  +  1)  +  8  =  2(6j2  +  6j  +  5)  +  1.  

Therefore, n is even.        

Proof C 

Theorem: If p is prime and n∈ℤ and p is a divisor of (4n2  +  1), then p  ≡  1(mod  4). 

Proof: Clearly,  p cannot be 2, so we need only show that p  ≢  3(mod  4). 

  Suppose p  =  4k  +  3 for some k∈ℤ.  

  Let y  =  2n. 

  Then, by Fermat’s Little Theorem, yp-­‐1  ≡  1(mod  p).  

  But y2  +  1  ≡  0(mod  p).  

  So, yp-­‐1  ≡  y4k+2  ≡  (y2)2k+1  ≡  (-­‐1)(mod  p). 

  But this cannot be the case. 

  Therefore, p  ≡  1(mod  4).        

 
Comprehension Questions for Proof A used in Experiment 1 

1. Using the method of the proof you have been working with, what would be an 

appropriate value for M if you were writing proof for the theorem that there are infinitely 

many primes of the form 6k + 5? 

2. Could M = 87, where M is defined as in this proof, if there were only 2 triadic primes? If 

yes, state the values of these 2 triadic primes. If no, explain why. 

3. In line 3, what is the purpose of assuming that the theorem is false and that there are only 

finitely many triadic primes? 

4. Why does the proof include the sub-proof that the product of monadic numbers is 

monadic? 

5. Which claim(s) in the proof logically depend on line 2 of the proof? 
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6. What does it mean for a number to be triadic? 

7. What does it mean for a number to be a prime? 

8. In line 5, why does the fact that 3 does not divide 4p2,…, pn imply that 3 does not divide 

M? 

9. Is the product of two triadic numbers triadic? Why, therefore, would this prevent the 

methods used in the proof you have been working with from being used to prove there 

are infinitely many monadic primes? 

10. If 3, 7, 11 and 19 were the only triadic primes, what would the value of M be? 

11. Which of the following summaries best capture the ideas of the proof? (Please circle the 

letter of your choice): 

a. The proof assumes there are infinitely many triadic primes and uses them to 

construct a triadic number M that has only monadic prime factors, which 

would imply M is also monadic. M cannot be monadic as M is triadic. 

b. The proof lets M = 4p2,…, pn + 3, where pi are prime numbers and pi does not 

equal 3. Thus, 2 does not divide M because M is odd. Further, pi does not 

divide M because it leaves a remainder of 3. 

c. The proof introduces monadic primes to be used later on in the proof. It lets M 

= 4p2,…, pn +3 and shows 2 does not divide M, since 2 is even and M is odd. 

However, this would not itself create an infinite triadic prime so the proof uses 

monadic primes to create an infinite triadic prime. 

12. Summarize in your own words how the proof arrives at the conclusion that M itself must 

be monadic. 

13. Do lines 3 & 7, which establish that M is not divisible by a triadic prime, depend on the 

statements made in lines 1 & 2, which establish that the product of monadic primes is 

monadic? Explain your answer. 
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14. What type of proof is this? 

 


