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Developing measures of the quality of understanding of a given mathematical concept 
has traditionally been a difficult and resource-intensive process. We tested an 
alternative approach, called Comparative Judgement (CJ), that is based not on 
psychometric instruments or clinical interviews but collective expertise. Eight 
mathematics education experts used CJ to assess 25 student responses to a test 
designed to probe conceptual understanding of fractions. Analysis revealed the CJ 
assessment process yielded high internal consistency, inter-rater reliability and 
validity. We discuss the implications of the results for using CJ to measure 
mathematical understanding in a variety of domains and contexts. 
CONCEPTUAL UNDERSTANDING OF MATHEMATICS 
Many scholars distinguish between conceptual and procedural understanding in 
mathematics education research (e.g., Hiebert & Lefevre, 1986; Shneider and Stern, 
2010; Skemp, 1976). Conceptual understanding is commonly associated with deep, 
flexible knowledge of underlying abstract principles and procedural understanding is 
commonly associated with operational knowledge required for stepwise problem 
solving (Star, 2005). In the research reported here our interest is in the measurement 
of conceptual understanding. 
Traditionally there have been two main approaches to measuring conceptual 
understanding. The first is to develop and psychometrically validate a bespoke 
instrument to probe students’ understanding of a particular content domain such as 
calculus (Epstein, 2007) or a particular concept such as equivalence relations 
(Rittle-Johnson, Matthews, Taylor & McEldoon, 2011). However this has the 
disadvantage of being a painstaking, resource-intensive process that must be repeated 
for every concept of interest. The second approach to measuring conceptual 
understanding, which is sometimes combined with the first, is to record one-to-one 
clinical interviews and analyse or rate the quality of each participant’s understanding 
(e.g., Knuth, Stephens, McNeil, & Alibali, 2006; Piaget, 1952). However clinical 
interviews have the disadvantage of requiring skill and consistency on the part of the 
interviewers and raters, and do not always lead to trustworthy results (Posner & 
Gertzog, 1982). 
The expense, lengthiness and difficulty of measuring conceptual understanding is a 
barrier to progress in mathematics education. Without valid, reliable and efficient 
measures it is challenging to evaluate the effectiveness of educational interventions, 
or to resolve debates in the literature such as whether learning via abstract or concrete 
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representations better aids knowledge transfer (de Bock, Deprez, van Dooren, 
Roelens  & Verschaffel, 2011; Kaminski, Sloutsky & Heckler, 2008). In this paper 
we report a study designed to test a novel method to measuring conceptual 
understanding, called Comparative Judgement, that offers promise for overcoming 
the drawbacks of traditional methods. 
COMPARATIVE JUDGEMENT (CJ) 
The CJ approach to measuring mathematical understanding involves two stages. First 
participants complete a test question designed to probe their understanding of a 
particular concept. The test question is likely to be open-ended and allow a wide 
variety of types of responses from participants. In the study reported here we used a 
question designed by a teacher for diagnosing teenage students’ understanding of 
fractions, shown in Figure 1.  
The second stage of the CJ approach requires mathematics education experts to make 
pairwise judgements of the quality of the test responses. Each expert is presented 
with two responses, such as those shown in Figure 2, and asked to decide which is 
‘better’ in terms of a given construct (ties are not allowed), in our case ‘conceptual 
understanding of fractions’. There are no detailed assessment criteria or scoring 
rubrics and instead each decision is holistic and based solely on the expert’s 
judgement. Many such pairings are presented to several experts and the decisions are 
statistically modelled (see Methods section) to produce a scaled rank order of test 
responses from ‘worst’ to ‘best’.  
CJ is a well established technique in psychometrics. It derives from the psychological 
principle that humans are better at comparing two objects against one another than 
they are at comparing one object against specified criteria (Thurstone, 1927). For 
example, people are more reliable at stating which of two objects is the heavier than 
they are at stating how many kilograms a single object weighs. A traditional 
drawback of CJ is that large numbers of judgements were required to produce a 
scaled rank order, limiting much past research to the ranking of six or fewer objects. 
Recent developments in information technology have helped overcome this 
drawback, enabling the rapid delivery of (virtual) objects for judging by remotely 
located experts, and making use of algorithms and statistical techniques to reduce the 
number of judgement decisions required (Pollitt, 2012). Consequently CJ can now be 
used routinely for educational research (e.g., Kimbell, 2012; Jones & Alcock, 2012) 
and practice (e.g., Bramley, 2007). 

Write down these fractions in order of size from smallest to largest.

Underneath, describe and explain your method for doing this.
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Figure 1: Test question for assessing understanding of fractions. 
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Figure 2: Two example test responses used in the study. 

The theoretical strength of the CJ approach is its reliance on collective expertise in 
the absence of assessment criteria and scoring rubrics. In this sense validity can be 
thought of as defined in terms of what the experts collectively consider the construct 
to be in practice. This makes CJ particularly promising for assessing constructs that 
are recognised and considered important by education experts, such as problem 
solving and conceptual understanding, but difficult if not impossible to specify 
comprehensively in rubrics (Laming, 2004). Moreover, constructs such as conceptual 
understanding lend themselves to open-ended test questions (e.g. Figure 1) that evoke 
a wide variety of responses (e.g. Figure 2). This variety of responses is difficult to 
anticipate in rubrics, but is well suited to holistic pairwise judgement by experts. 
Readers may wish to try judging which of the two responses in Figure 2 they 
consider to be ‘better’ in terms of conceptual understanding of fractions. 
The practical motivation for studying the use of CJ for assessing conceptual 
understanding is its potential efficiency. Unlike painstakingly developed 
psychometric instruments, CJ can be rapidly applied to any target concept with little 
effort beyond recruiting judges with the requisite expertise. Unlike clinical interviews 
CJ exploits the long-established psychological principle of pairwise comparisons and 
yields high validity and reliability with minimal training (e.g., Jones, Swan & Pollitt, 
submitted).  
THE STUDY 
In the remainder of the paper we report a feasibility study into using CJ to measure 
conceptual understanding of mathematics. Eight mathematics education experts 
comparatively judged the responses of 25 secondary students to the question shown 
in Figure 1. The experts’ decisions were used to construct a scaled rank order of 
students’ responses from ‘weakest’ to ‘strongest’ conceptual understanding. Our 
research goal was to evaluate the method’s internal consistency, inter-rater reliability 
and validity. We conclude the paper by discussing the implications of the findings for 
measuring conceptual understanding.  
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Figure 3: Scaled rank order of test responses from ‘worst’ (left-most) to ‘best’ 

(right-most), with standard errors for the parameter estimation for each response. 
METHOD 
Materials. The test question used for the CJ exercise is shown in Figure 1. The 
question was designed by a mathematics teacher in a school in central England who 
used it with her classes for diagnostic purposes. For each class the teacher wrote the 
question on the board and allowed them around ten minutes to complete it. We 
obtained 25 responses from children aged 12 to 15 years for the study, including the 
two examples shown in Figure 2.  
Participants. Eight mathematics education experts (four teachers, two examiners, two 
research students who were both former teachers) were recruited for the CJ exercise. 
All had experience of using CJ to assess mathematics from their involvement in 
previous projects and none required training. 
System. Pairs of scripts were delivered to the participants online by TAG 
Development’s e-scape system (Derrick, 2012), which uses an adaptive algorithm 
(Pollitt, 2012) to select scripts in order to minimise the number of judgements 
required to construct a stable rank order. 
Procedure. Each participant completed 20 practice judgements then 50 live 
judgements online within a two-week window. Only the 400 live judgements (8 
participants × 50 judgements) were used in the analysis. For each judgement the 
e-scape system recorded which participant made the judgement, which two scripts 
were presented, and which script the judge preferred.   
ANALYSIS 
Rank order. The 400 judgement decisions made by the expert participants were fitted 
to the Bradley-Terry model using a maximum likelihood estimation procedure (Firth, 
2005). This produced a z-score parameter and standard error for each test response, 
shown in Figure 3. We then assessed these parameters in terms of internal 
consistency, inter-rater reliability and validity.   
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Internal consistency. We conducted three checks on the internal consistency of the 
rank order (Pollitt, 2012). First we calculated the Rasch Separation Reliability 
Coefficient, often considered directly analogous to Cronbach’s alpha for traditional 
test items (Bond & Fox, 2008), and found it was acceptably high (.88). Next we 
calculated and standardised judge ‘misfit’ figures, which give an estimate of the 
consistency of a given judge’s decisions with the final rank order. A common 
guideline is to consider those judges whose misfit figures are less than two standard 
deviations above the mean (i.e. z < 2) to be performing consistently. We found that 
the judges’ misfit figures were all well within two standard deviations of the mean 
suggesting the judges performed consistently. Similarly we calculated test response 
misfit figures to provide an estimate of how consistently each response was judged 
relative to the final rank order. The scripts’ misfit figures were all well within two 
standard deviations of the mean, bar one response that was marginally above the 
threshold (z = 2.07). Taken together the Rasch Separation Reliability Coefficient, 
judge misfit figures and response misfit figures indicate that the final scaled rank 
order was internally consistent. 
Inter-rater reliability. Inter-rater reliability measures the extent to which the same 
rank order would have been produced by a different group of expert judges drawn 
from the same population. To measure inter-rater reliability we split the eight judges 
into two groups of four and used their judgements (200 per group) to construct two 
new separate scaled rank orders. We then calculated Pearson’s product-moment 
correlation coefficient between the two sets of estimated parameters. We repeated 
this process 36 times, once for every possible unique split of the eight judges into two 
groups of four, to produce 36 estimates of inter-rater reliability. We found that the 
correlation coefficients ranged from r = .79 to .95 and the mean was r = .87, 
suggesting an acceptably high inter-rater reliability.  
Validity. We explored the validity of the CJ assessment process in terms of the 
correlation of the outcomes with measures of students’ general mathematical 
achievement, and their performance on the fractions task measured in purely 
procedural terms (the extent to which they correctly ordered the fractions). 
General mathematical achievement was measured by teacher estimates of ability. For 
the fifteen oldest (13-15 years old) students in the study predicted grades for the 
terminal mathematics examination in England (GCSE) were available. These ranged 
from A* (highest) to F (lowest). For the ten youngest students (12-13 years old) we 
obtained a dichotomous (high/low) assessment of their ability from their class 
teacher.  
Procedural performance on the task was assessed by calculating the difference 
between the correct ordering and that given by each student using the Levenshtein 
distance metric. This is a calculation of the number of steps required to correct a 
sequence (Levenshtein, 1966). This produced a score for each student’s ordered 
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fractions that ranged from 0 (fractions correctly ordered) to 7 (fractions very out of 
order).  
If our CJ approach was measuring something beyond procedural understanding of the 
fractions task, then we would expect the teachers’ assessments of students’ 
mathematical achievement to be better predictors of the CJ parameters than the 
procedural accuracy scores. To investigate this we conducted multiple regression 
analyses predicting CJ parameters with general mathematical achievement and 
procedural accuracy scores. In view of the differing measures of general 
mathematical achievement, this analysis was conducted separately for the older and 
younger students. 
For the 15 oldest students we found that the two predictors explained 53% of the 
variance in the parameter estimates, R2 = .53, F(2, 12) = 6.69, p = .011. Mathematical 
achievement (predicted grade A* to F) significantly predicted parameter estimates, β 
= .40, t(12) = 2.64, p = .022, but Levenshtein distance was not a significant predictor, 
β = -.07, t(12) = -.519, p = .613. Similarly, for the ten youngest students we found 
that the two predictors explained 68% of the variance in the parameter estimates, R2 = 
.68, F(2, 7) = 7.33, p = .019. Mathematical achievement (high or low) significantly 
predicted parameter estimates, β = 1.38, t(7) = 3.83, p = .006, but as with the older 
children Levenshtein distance was not a significant predictor, β = -.23, t(7) = -1.84, p 
= .108.  
In sum, for both groups of students we found that teachers’ assessments of 
mathematical achievement were better predictors of students’ CJ parameters than was 
a measure of the procedural accuracy on the same task. This provides some evidence 
to indicate that the CJ method was measuring something other than procedural 
understanding, and the relationship with general mathematical achievement is 
consistent with the suggestion that it was measuring conceptual understanding. 
DISCUSSION 
We tested an approach to measuring conceptual understanding based on the collated 
holistic judgement of experts. Traditionally the subjectivity of holistic judgement 
leads to poor psychometric properties compared to methods based on objective 
scoring rubrics (Laming, 2004). However the CJ approach reported here yielded high 
internal consistency (Rasch Separation Reliability Coefficient = .88), high inter-rater 
reliability (r = .87) and high validity in terms of independent student achievement 
data (r = .72). We believe these acceptable psychometrics arising from subjective 
assessment decisions were due to the underlying principle that people are much more 
reliable at comparing one object against another than they are at rating an object 
isolation. 
The strong association found between the CJ outcomes and teachers’ assessment of 
students’ general mathematical achievement suggests that the experts assessed 
mathematics as opposed to surface features such as neatness or length of response. 
However, can we be confident that the method measured conceptual rather than 
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procedural understanding of mathematics? For insight we turn to how accurately the 
students ordered the fractions in their responses as scored by the Levenshtein 
distance. The Levenshtein distance can be considered a measure of the procedural 
knowledge required to complete this task accurately. We found that teachers’ 
assessments of students’ mathematical achievement were a predictor of CJ 
assessment outcomes but the Levenshtein distances were not. Therefore it seems the 
CJ method produced measures more closely related to general mathematical ability 
than to specific performance on the fraction ordering test.  
Nevertheless, to claim that the CJ process reported here measured conceptual 
understanding would be subject to two criticisms. First, the distinctiveness of 
conceptual and procedural knowledge, and the realism of operationalising them 
independently, has been questioned (e.g., Schneider & Stern, 2010; Star, 2005). For 
example, the procedures used by students to order the fractions are likely to be 
strongly influenced by how (and how well) the students conceived the underlying 
abstract principles of fractions. Second, the student achievement data used to 
establish the validity of the CJ method provide a general measure of mathematical 
achievement because they are based on the entire school mathematics curriculum, not 
just fractions. However teachers commonly use evidence to generate student 
achievement data that is subject to criticism by the mathematics education 
community and august bodies for being highly procedural, such as past papers from 
GCSE exams (e.g. Ofsted, 2008).  
Therefore some caution must be exercised in claiming we have demonstrated the 
measurement of conceptual understanding of fractions. Further work is required to 
establish the extent to which CJ may offer a method that can be used routinely in 
mathematics education research and practice. A next step will be to validate CJ for 
the case of domains and concepts for which psychometrically validated instruments 
and methods for measuring conceptual understanding already exist. 
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