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Abstract 

Nonsymbolic comparison tasks are widely used to measure children’s and adults’ Approximate 

Number System (ANS) acuity. Recent evidence has demonstrated that task performance can 

be influenced by changes to the visual characteristics of the stimuli, leading some researchers 

to suggest it is unlikely that an ANS exists that can extract number information independently 

of the visual characteristics of the arrays. Here we analysed 124 children’s and 120 adults’ 

dot comparison accuracy scores from three separate studies to investigate individual and 

developmental differences in how numerical and visual information contribute to nonsymbolic 

numerosity judgements. We found that, in contrast to adults, the majority of children did not 

use numerical information over and above visual cue information to compare quantities. This 

finding was consistent across different studies. The results have implications for research on 

the relationship between dot comparison performance and formal mathematics achievement. 

Specifically, if most children’s performance on dot comparison tasks can be accounted for 

without the involvement of numerical information, it seems unlikely that observed 

correlations with mathematics achievement stem from ANS acuity alone.  

Keywords: Approximate Number System, nonsymbolic comparison task, visual cues, 

numerical cognition 
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Developmental differences in approaches to nonsymbolic comparison tasks 

Introduction 

Throughout the last decade, nonsymbolic dot comparison tasks have been used as a tool 

to measure numerical representations of quantity. Such tasks are designed to assess an 

individual’s Approximate Number System (ANS) acuity through multiple comparisons of brief 

displays of dot arrays. Dot comparison tasks have been assumed to measure ANS processing 

because performance follows the Weber-Fechner law: participants’ accuracy declines as the 

ratio between the to-be-compared arrays approaches 1 (Dehaene, 1997). The dominant 

‘number sense’ model of the ANS (Barth et al., 2005; Dehaene, 1997; Feigenson, Dehaene, & 

Spelke, 2004) proposes that imprecise and abstract representations of numerical magnitude 

are generated when comparing nonsymbolic arrays, and that these representations are 

formed independently of non-numerical continuous magnitudes (Feigenson et al., 2004; 

Leibovich et al., 2016). The number sense account postulates that only the ratio of the to-be-

compared numerosities and the individual’s ANS acuity should influence dot comparison 

judgements.  

Recently, there has been an increase in research attention paid to the reliability and 

validity of dot comparison tasks. This interest, at least in part, stems from the high-profile 

debate around the relationship between ANS acuity and formal mathematics ability. Many 

studies have found a significant correlation between nonsymbolic dot comparison 

performance and symbolic mathematics achievement across the lifespan (e.g. Halberda, Ly, 

Wilmer, Naiman, & Germine, 2012; see Chen & Li, 2014, and Schneider et al. 2016, for meta-

analyses). Nevertheless, there are also a number of studies that have not found a significant 

correlation between dot comparison performance and mathematics achievement, in both 

adults (e.g. Inglis, Attridge, Batchelor & Gilmore, 2011) and children (e.g. Holloway & Ansari, 

2009; see De Smedt, Noël, Gilmore, & Ansari, 2013, for a review). 

A contributing factor to the inconsistencies in the literature may be the validity of the 

tasks. Recent evidence has shown that dot comparison tasks are not pure measures of ANS 

acuity, and that the visual characteristics of the dot array stimuli also substantially influence 
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judgements (Clayton & Gilmore, 2015; Clayton, Inglis, & Gilmore, 2015; Fuhs & McNeil, 2013; 

Gebuis & Reynvoet, 2012; Gilmore et al., 2013; Smets, Sasanguie, Szűcs, & Reynvoet, 2015; 

Szűcs, Nobes, Devine, Gabriel, & Gebuis, 2013). To ensure that the visual characteristics of 

dot array stimuli are not informative of the number of dots, researchers attempt to control 

potential cues such as the average dot size, the cumulative surface area of the dots, the 

density of the dots, and the convex hull of the arrays (the smallest contour surrounding the 

dots). These manipulations are intended to ensure that it is not possible for an individual to 

perform significantly above chance across a set of trials by focusing on a particular visual cue, 

without the involvement of numerical processing. There are several approaches to 

constructing dot array stimuli and some methods employ more rigorous controls than others 

by manipulating multiple features of the arrays simultaneously (Clayton et al., 2015; Smets et 

al., 2015). Gebuis and Reynvoet (2011) criticised methods that only control for a single visual 

cue at a time and found that participants are likely to rely on multiple visual cues and switch 

between them depending on the trial characteristics. Gebuis and Reynvoet provided an 

example of a trial where one visual cue, e.g. average dot size, is equated across the two 

arrays and therefore uninformative of number. In such a case, they suggested that 

participants are likely to switch their focus to an uncontrolled visual cue, e.g. cumulative 

surface area, which covaries with number. From this, Gebuis and Reynvoet (2012) suggested 

that the existence of an ANS that is independent of visual cues is unlikely.  

Indeed, researchers have since developed alternative theories of nonsymbolic numerosity 

processing. Leibovich et al. (2016) argued that the correlation between numerosity and 

continuous magnitudes, which is prominent in daily life, is a serious barrier to researchers 

who aim to assess non-symbolic numerosity processing in isolation from visual cues. 

Leibovich and colleagues proposed that both numerosities and continuous magnitudes are 

processed holistically when judging nonsymbolic quantities. According to this account, 

participants completing a dot comparison task will integrate all available numerical and non-

numerical cues in order to make their decision, rather than focussing on a single magnitude. 

In line with this, Gebuis and Reynvoet (2012) pointed out that, given the natural correlation 



NUMERICAL	PROCESSING	IN	ANS	TASKS	 5	

between number and visual cues, a system which is unique to numerical processing would be 

inefficient.  

 

Others have similarly recognised the influence of non-numerical stimulus features on 

numerical judgements, particularly when visual cues are misleading, resulting in the 

development of the competing processes account (Clayton & Gilmore, 2015; Fuhs & McNeil, 

2013; Gilmore et al., 2013; Nys & Content, 2012). According to this account, inhibitory 

control skills play an important role in nonsymbolic comparison tasks in cases where the size 

of the visual characteristics (e.g. dot size or convex hull) is incongruent with the numerosity 

represented (i.e. the side with larger visual cues represents the numerically smaller set). In 

these cases, unhelpful visual cues may interfere with numerosity processing, thus requiring 

inhibition skills to ignore the irrelevant and misleading non-numerical information and focus 

on making a judgement solely based on numerosity. Support for this account comes from 

several dot comparison studies which have demonstrated that participants perform 

significantly more accurately on trials where visual cues are congruent with numerosity in 

comparison to incongruent trials (Barth et al., 2006; Clayton & Gilmore, 2015; Clayton et al., 

2015; Gebuis, Kadosh, de Haan, & Henik, 2009; Gilmore et al., 2013; Hurewitz et al., 2006; 

Nys & Content, 2012), akin to performance on a classic inhibitory control Stroop task (Stroop, 

1935). The competing processes account of performance is further supported by studies that 

have discovered that the link between dot comparison task performance and formal 

mathematics achievement can be accounted for by inhibitory control skills (Fuhs & McNeil, 

2013; Gilmore et al., 2013).  

Challenges to the dominant number sense theory of ANS processing are becoming 

increasingly frequent, however dot comparison tasks remain frequently reported in the 

literature as a measure of ANS acuity, without discussion of or control for visuospatial 

processing and inhibitory control skills.  

The aim of this study was to investigate whether, in order to explain performance on dot 

comparison tasks, it is sufficient to consider only the visual cues contained in the task 
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stimuli1. In other words, we ask whether the assumption that the ANS exists is required to 

account for participants’ behaviour. To explore this question we calculated the extent to 

which we could explain performances on a standard dot comparison task with an extremely 

simple model where only visual cues influence judgements, and where the manner in which 

these visual cues influence judgements does not vary between trials. We then determined 

whether adding numerical information to this model significantly improved its predictive 

power. 

Previous evidence has shown that performance on dot comparison tasks improves during 

adolescence (Halberda et al., 2012), and the relationship between dot comparison task 

performance and mathematics achievement may decline with age (Fazio, Bailey, Thompson & 

Siegler, 2014; Inglis et al., 2011). This raises the possibility that dot comparison tasks 

measure different cognitive skills at different stages of development, and so it is important to 

study individual differences in approaches to dot comparison tasks across development.  

Similarly, evidence has shown that the method used to construct dot comparison stimuli 

significantly affects task performance (Clayton et al., 2105; Smets et al., 2015). Therefore, 

using stimuli created with different methods is important when exploring the role of visual 

cues in dot comparison task behaviour.  

In sum, we had three main research questions. First, can performance on dot comparison 

tasks be explained using visual cues alone? Second, are there developmental differences with 

respect to this question? Finally, are there significant differences across tasks that use 

different stimuli construction methods?  

 

Method 

A total of 244 participants (124 children, mean age = 9.19, SD = 1.25; 120 adults, 

mean age = 22.86, SD = 3.85) completed a dot comparison task in three separate studies. 

																																																								
1	The visual cues we chose to explore were average dot size and convex hull size. Although 
some studies also report controlling for additional variables such as cumulative surface area 
and density, these two factors are highly correlated with average dot size (Gebuis & 
Reynvoet, 2012), and so there would be no substantial benefit to examining these as 
separate predictors. Some methods for constructing dot arrays control only for cumulative 
surface area. Where we used stimuli originally constructed in this way, we nevertheless 
calculated dot size and convex hull size for these stimuli and used this in our analyses.	
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The studies were approved by the Loughborough University Ethics Approvals (Human 

Participants) Sub-Committee. Details of each study are described below. 

 

Study 1  

Participants 

Participants were 51 adult students from Loughborough University (19 male, 32 

female), with a mean age of 24.47 years (SD = 4.50), and 80 children aged 7-11 years (42 

male, 38 female), with a mean age of 9.65 years (SD = 1.27). Participants were tested 

individually in a quiet room. Adults were given a £4 inconvenience allowance for their time, 

and children received game tokens as part of a Summer Scientist Week event at the 

University of Nottingham (www.summerscientist.org). 

Task procedure  

On each trial participants briefly viewed two arrays of dots presented simultaneously, 

side-by-side on a 15” laptop screen. Participants were required to select the more numerous 

array using the left and right keys marked on the keyboard. Instructions were read out loud 

and presented on screen to the participants as follows: “You are going to see two sets of 

dots. You have to decide which set has the most dots in it. If this side of the screen contains 

the most dots press the left key [text on left side of screen, stickered ‘a’ key pointed out by 

experimenter] / if this side of the screen contains the most dots press the right key [text on 

right side of screen, stickered ‘l’ key pointed out by experimenter]. Each trial began with a 

fixation point (600ms) followed by the presentation of the two arrays (600ms), and finally a 

grey screen with a white ‘?’ presented in the centre until a response was given. There were 8 

practice trials followed by 96 experimental trials. Trials were presented in a random order. 

The task took approximately 5 minutes to complete and breaks were given throughout. This 

task was part of a larger battery of numerical and cognitive processing tasks that are not 

reported here.  

Stimuli 

The stimuli were created using the Gebuis and Reynvoet (2011) protocol to control 

for visual cues. This created four image types. Image type 1 included pairs of arrays where 
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the more numerous array contained bigger dots and a bigger convex hull (fully congruent). 

Image type 2 included pairs of arrays where the more numerous array contained smaller dots 

and bigger convex hull (dot incongruent, convex hull congruent). Image type 3 included pairs 

of arrays where the more numerous array contained bigger dots and a smaller convex hull 

(dot congruent, convex hull incongruent). Image type 4 included pairs of arrays where the 

more numerous array contained smaller dots and a smaller convex hull (fully incongruent). 

The ratios between the number of dots in each array (calculated larger/smaller) ranged from 

1.14 – 1.64 and the absolute numbers represented ranged from 22 – 36 dots. The array of 

dots on the left was coloured yellow and the array on the right was coloured blue, presented 

on a grey background. 

 

Study 2  

Participants 

Participants were 57 adult students from Loughborough University (24 male, 33 

female) with a mean age of 21.34 years (SD = 2.35). Participants were tested individually in 

a quiet room and were given a £3 inconvenience allowance for their time.  

Task procedure 

 Participants completed a dot comparison task made up of two types of trials: stimuli 

created using the Gebuis and Reynvoet (2011) protocol, and stimuli created using the 

Panamath software. Trial presentation followed the same procedure described in Study 1. 

There were eight practice trials followed by a total of 312 experimental trials, which were 

divided into four blocks. Block one consisted of 96 Gebuis and Reynvoet trials and block two 

consisted of 60 Panamath trials. Both blocks of trials were presented twice. The order of the 

blocks was counterbalanced and trials within the blocks were presented in a random order. 

The task took approximately 10 minutes to complete and breaks were given throughout. This 

task was part of a larger battery of numerical and cognitive processing tasks that are not 

reported here. 

Stimuli 
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The Gebuis and Reynvoet trials were identical to those used in Study 1. The 

Panamath trials were identical to those used by Libertus et al. (2012); on half of the trials the 

numerically larger set had a larger cumulative surface area, and on the other half of the trials 

the numerically larger set had a smaller cumulative surface area. The ratios between the 

number of dots in each array ranged from 1.06 – 2 and the absolute numbers represented 

ranged from 10 – 24 dots. As described below, we calculated the average dot size and 

convex hull size for the Panamath stimuli and used these, rather than cumulative surface 

area, in our analyses, to allow direct comparison across stimuli types. 

 

Study 3  

Participants 

 Participants were 44 children (21 male, 23 female) aged 7-9 years with a mean age 

of 8.36 years (SD = 0.60), and 12 adults (3 male, 9 female) with a mean age of 23.20 years 

(SD = 4.04). Children were tested in a quiet area of their school and were given a certificate 

for taking part. Adult participants were tested individually in a quiet room and were given £2 

inconvenience allowance for their time.  

Task procedure 

The data collected were part of a study exploring the influence of set size on dot 

comparison performance (Clayton & Gilmore, 2014). The entire procedure for this task was 

identical to that described in Study 1, except there were 184 experimental trials. The task 

took less than 10 minutes to complete and breaks were given throughout.  

Stimuli 

Stimuli were created with the Gebuis and Reynvoet (2011) protocol. The arrays 

consisted of white dots on a black background. The ratios between the number of dots in 

each array ranged from 1.07– 1.9 and the absolute numbers represented ranged from 10 – 

72 dots.  

 

Analysis 
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 For each of the stimuli used in the three studies, the average dot size and the 

convex-hull size of each array was calculated. The Graham Scan algorithm (Graham, 1972) 

was used to calculate the size of the convex hull. Average dot size was calculated by 

summing the number of coloured pixels in each array and dividing by the number of dots. 

Using these values, the ratio differences between the two arrays comprising each trial were 

calculated (largest/smallest numerosity) for convex-hull, average dot size and number. These 

ratios were then log transformed to ensure linearity so that equivalent ratios above and 

below 1 were comparable. Ratio characteristics of the stimuli are shown in Table 1.  

Each participant’s trial-by-trial accuracy scores were subjected to separate 

hierarchical logistic regressions, predicting accuracy for every trial with two steps: step one 

included dot-size ratio and convex-hull size ratio (visual cues), step two included numerical 

ratio. The first step represents a model where judgements for each trial are entirely based on 

the dot-size and convex hull ratios of that trial, and where the relative weights of these ratios 

does not vary between trials. The second step represents a model where behaviour is a 

function of these visual cue ratios as well as the trial’s numerical ratio. If numerical 

processing was fundamental to performance on the dot comparison task we would expect the 

second model to be a substantial improvement over the first. 

The median Nagelkereke pseudo-R2 change from the addition of step two was 

recorded. Further to this, whether or not the addition of numerical information in step two of 

the regression significantly improved the model was recorded as binary data (either 

significant or non-significant). This analysis aimed to capture whether, for each participant 

individually, accuracy on the dot comparison trials was significantly predicted by numerical 

ratio after visual cue information was taken into account.  

These data from all 244 participants were combined across studies 1, 2 and 3. Two 

sets of analyses were conducted involving different sets of trials. First, only trials created with 

the Gebuis and Reynvoet method were considered because previous research has 

demonstrated a non-significant relationship between individuals’ performances on tasks 

created with different controls for visual cues (Clayton et al., 2015; Smets et al., 2015). For 

this analysis data from all 244 participants were combined across the three studies. A Mann-
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Whitney U test was used to compare differences in adults’ and children’s pseudo-R2 increase 

due to the inclusion of numerical ratio in the model. Pearson’s chi-squared tests were then 

used to examine whether adults and children differed in their use of numerical information, 

as measured by whether or not the addition of numerical ratio in step two of the regression 

significantly improved the model, after visual cues were controlled for. Chi-squared tests were 

also used to examine whether there was any difference in use of numerical information 

across the three studies (Studies 1, 2 and 3).  

Second, data from the 57 participants in Study 2 were examined to explore whether 

different protocols have any influence on adults’ use of numerical information independent 

from visual cues. For this analysis the hierarchical logistic regression was performed twice for 

each participant, once with the Gebuis and Reynvoet trials, and once with the Panamath 

trials. A McNemar test was used to compare differences in whether numerical information 

significantly improved the regression model, over and above visual cues, between trials 

created with each protocol. 

 

Results 

Descriptive statistics, including mean accuracy scores and standard deviations are provided in 

Figure 1. The median pseudo-R2 values for each step of the regression models are reported in 

Table 2, and the median standardised beta weights from the second stage of the model, 

(calculated as per Menard, 2011, formula 5) are reported in Table 3. For each study, the 

changes in pseudo-R2 values, and the percentage of participants for whom numerical ratio 

significantly improved the regression model after controlling for visual cues, are presented in 

Table 4. Figure 2 shows that adults demonstrated larger increases in pseudo-R2 values due to 

the addition of numerical information in the model at step two, when controlling for visual 

cue information in step one. This increase in pseudo-R2 values for the adults (Mdn = 0.055) 

represented a significantly larger increase in comparison to the change in children’s pseudo-

R2 values (Mdn = 0.015), U = 3836.5, p < .001. In line with this, a chi-squared test of 

independence showed a significant effect of age group on whether or not numerical 

information significantly improved the model when added in step two of the regression, χ² (1, 
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N = 244) = 41.06, p < .001, Φ = .41. The addition of numerical information to the model 

explained significantly more variance in accuracy scores than visual cues alone for 71.7% of 

adults, and just 30.6% of children. This implies that for a majority of children (69.4%), and a 

large minority of adults (28.3%), accuracy on dot comparison trials could be accounted for 

without the need to include numerical ratio in the model.  

This effect was consistent across multiple dot comparison studies for both adults and 

children. Chi-squared tests of independence showed no effect of study characteristics (e.g. 

amount of trials, range of numerical ratios presented) on whether numerical information 

significantly improved the regression model when added in step two, after controlling for 

visual cues at step one. The effects of study characteristics were non-significant for children, 

χ2(1, N = 124) = 1.05, p = .306, and adults χ²(2, N = 120) = 5.267, p = .072. 

A final analysis was conducted with the data from Study 2 to explore the influence of 

the protocol used to construct dot array stimuli (i.e. Gebuis & Reynvoet; Panamath). A 

McNemar test demonstrated that the method of stimuli construction had a significant effect 

on whether or not adding numerical information significantly improved the fit of the 

regression model in step two, after accounting for visual cues, p = .004. Adult participants 

were more likely to use numerical information over and above visual cue information on trials 

created with the Gebuis and Reynvoet protocol (78.9%) than on trials created with the 

Panamath protocol (52.6%). 

It is worth noting that when the steps of the regression model were reversed to 

include numerical ratio at step one, and visual cues (dot-size ratio and convex-hull ratio) at 

step two, pseudo-R2 increased significantly for both adults (Mdn = 0.341) and children (Mdn 

= 0.326) at step two. There were no significant differences in pseudo R2 changes across age 

groups (U = 7131, p = .576), but a chi-squared test of independence showed a significant 

effect of age group on whether or not visual cues significantly improved the fit of the model 

when added in step two of the regression, χ²(1, N = 244) = 4.429, p = .035, Φ = .135. The 

addition of visual cue information to the model explained significantly more variance in 

accuracy scores than numerical information alone for 98.3% of adults and 92.7% of children. 

There was no effect of study characteristics on whether visual cue information significantly 
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improved the fit of the model when added in step two, after controlling for numerical 

information at step one, for children χ2(1, N = 124) = 1.7, p = .191, and adults χ²(2, N = 

120) = 2.752, p = .253. Finally, a McNemar test demonstrated that stimuli generation 

method had no significant effect on whether or not visual cues accounted for significantly 

greater variance in participants’ accuracy scores over and above numerical information, p = 

.063. Adult participants were as likely to use visual cues over numerical information on trials 

created with the Gebuis and Reynvoet protocol (100%), as on trials created with the 

Panamath protocol (91.2%). 

 

Discussion 

 Nonsymbolic dot comparison tasks are assumed to measure ANS acuity, but few 

studies have explored the validity of this widely used task. Recent evidence has highlighted 

the significant influence of visual cue processing on dot comparison performance (Clayton & 

Gilmore, 2014; Fuhs & McNeil, 2013; Gebuis & Reynvoet, 2012; Gilmore et al., 2013; Smets 

et al., 2015; Szűcs et al., 2013), however there is a dearth of research investigating individual 

and developmental differences in the cognitive underpinnings of task performance. Here, we 

investigated whether or not we need the hypothesis that the ANS is involved in comparing 

nonsymbolic dot arrays. More specifically, we asked whether we can explain participants’ 

behaviour on this task using a simple model that assumed that judgements are entirely 

driven by integrating information derived from visual cues, and that the manner of this 

integration does not vary between trials. We found that, for the majority of children in the 

study, adding numerical information over and above the information provided by visual cues 

did not explain significantly greater variance. For most adults, however, adding numerical 

information did improve the model. There were no significant differences in these findings 

across the three studies created using the same method of stimuli construction. These results 

raise the possibility that nonsymbolic comparison tasks are completed using different 

strategies by different age groups.  

Our simple model assumed that each participant used visual cues in the same way on 

all the trial they completed. However, this is a gross oversimplification: for instance, research 
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suggests that participants are likely to switch their focus between different visual cues on 

each trial depending on the characteristics of both the individual trial and those of recent 

trials (Gebuis & Reynvoet, 2011; 2012). It is therefore likely that, with a more realistic model 

where the effect of visual cues is allowed to vary on a trial-by-trial basis, the assumption that 

numerical processing is taking place will be required for even fewer participants. 

Consequently, our simple model has, if anything, overestimated participants’ reliance on 

numerical information.  

Our findings can help us to distinguish between the three prominent models of 

nonsymbolic comparison processing presented in our introduction: the dominant number 

sense model of the ANS (Barth et al., 2005; Dehaene, 1997; Feigenson et al. 2004), the 

visual cues hypothesis (Gebuis & Reynvoet, 2012), and the competing processes account 

(Clayton & Gilmore, 2015; Fuhs & McNeil, 2013; Gilmore et al., 2013; Nys & Content, 2012). 

First, the traditional ANS explanation of dot comparison performance, which suggests that 

ANS processing occurs independently of visual cues, cannot explain the present results. When 

the regression analysis was reversed, with numerical information included at step one, the 

addition of visual cues at step two significantly improved the model for almost every 

participant, suggesting that the vast majority of participants (>90%) did not complete the 

task based on numerical judgements alone. Second, the opposite hypothesis that comparison 

judgements can be made solely by weighing up visual cues holds up for 69.4% of children’s 

data and just 28.3% of adults. In our over-simplified model where the relative salience of 

visual cues did not change on a trial-by-trial basis, including numerical information in the 

model explained significantly greater variance in performance than a model with visual cues 

alone. That is not to say that a more complex visual cue account where trial-by-trial changes 

in visual cue saliency are accounted for could not better explain the present results. 

Therefore, the visual cue model cannot be ruled out, but it would need expanding to explain 

the developmental differences in how visual cues are processed. In the current forms of the 

three accounts, the competing processes account is most consistent with the present results. 

This account accounts for individual and developmental differences in performance through 

the role of inhibition. Previous evidence suggests that individual differences in dot comparison 
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performance can be, at least partially, attributed to individual differences in inhibitory control 

skills (Gilmore et al., 2013; Cappelletti, Didino, Stoianov, & Zorzi, 2014). It could be that the 

developmental differences evidenced here are a result of improved inhibitory control 

development between children and adults (Luna et al., 2004; Morton, 2010). To clarify, 

adults who have superior inhibitory control skills may be more proficient and ignoring 

irrelevant visual features of the stimuli and focusing on numerosity, in comparison to children 

with poorer inhibitory control skills who may not be able to overcome the influence of these 

visual cues. Of course this hypothesis requires further investigation with children and adults 

in a study where inhibitory control ability is also measured.  

 Salti, Katzin, Katzin, Leibovich and Henik (2016) proposed that differences in saliency 

between visual and numerical cues might explain the strategies that participants use when 

comparing dot arrays. Specifically, Salti et al. suggested that when the differences between 

visual cues in a dot comparison trial are more salient than the differences between 

numerosities, it is plausible that participants would rely on the more salient dimension, visual 

cues, to guide their response. However, this hypothesis cannot explain the results of the 

present study for three reasons. Firstly, the Panamath stimuli had similar ratios across the 

three predictors (convex-hull ratio, dot-size ratio and numerical ratio; see Table 1), yet the 

standardised betas (see Table 3) showed the same patterns as the Gebuis and Reynvoet 

stimuli which had larger ratios for visual cues. Secondly, the salience of the ratios does not 

appear to be the critical factor in the regression analyses; Convex-hull ratios were smaller 

than dot-size ratios, yet the standardised betas in the regression were bigger for convex-hull. 

In contrast, Salti et al.’s (2016) proposal would predict dot size to be the most salient cue, 

and therefore the strongest predictor of dot comparison performance. Thirdly, adults and 

children completed the same dot comparison task trials, and so differences in cue saliency 

cannot explain the developmental effects found. In sum, although it is possible that 

differences in saliency between cues might bias participant’s strategies to some extent, this is 

unlikely to be the only factor guiding participants’ responses.  

As well as the aforementioned theoretical implications, the present findings have 

methodological implications for the use of dot comparison tasks in research intending to 
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assess ANS acuity. First, and most crucially, our findings suggest that dot comparison tasks 

are not suitable as a measure of ANS acuity for all children. For almost 70% of children, 

numerical judgements did not explain significant extra variance in accuracy scores over and 

above that explained by visual cues, and therefore we cannot be sure that any numerical 

processing took place. This has serious implications for studies that have investigated the 

correlation between dot comparison performance and symbolic mathematics achievement. 

Conclusions about this relationship that are based on dot comparison performance as a 

measure of ANS acuity may be invalid. This is particularly important because a large 

proportion of the studies investigating the acuity of numerical representations that may 

underlie mathematical achievement have been conducted with school-aged children. In 

particular, some studies have demonstrated that a stronger association between dot 

comparison performance and mathematics ability is found with children rather than adults 

(Fazio, et al., 2014; Inglis et al., 2011). This has often been interpreted as a correlation 

between ANS acuity and mathematics achievement, however these results could also be 

caused by a mutual relationship with other cognitive skills, such as inhibitory control. 

 Second, one can conclude from this study that dot comparison tasks measure 

different cognitive constructs in adults in comparison to 7-11 year old children. Adults were 

significantly more likely than children to use numerical information over and above visual cue 

information when comparing dot arrays. From this, future research should not assume the 

same underlying processes contribute to accuracy scores for different developmental groups. 

Dot comparison tasks appear to be better measures of ANS acuity for adults, however, this 

group was far from homogeneous, and still 28% of our adult participants did not appear to 

have used numerosity information over and above visual characteristics.   

 Our results were consistent across three studies including dot comparison tasks that 

varied in the range of numerosities represented and the number of trials completed by the 

participants. For a subset of 57 adult participants, the influence of the protocol for creating 

the dot array stimuli was also analysed. Participants were more likely to be influenced by 

numerical information independently from visual cue information on trials created with the 

Gebuis and Reynvoet protocol (designed to multiple visual cues simultaneously, including 
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convex hull), than on trials created with the Panamath protocol (designed to manipulate 

single visual cues, excluding convex hull). A possible explanation for this difference is that 

due to the lack of systematic control over convex hull size in the Panamath dot arrays, 

participants were more able to make effective judgements on numerosity based on visual 

cues alone (see Clayton et al., 2015, for evidence of the confound between convex hull and 

numerosity in Panamath stimuli). Nevertheless, findings from the three studies that used the 

Gebuis and Reynvoet stimuli generation protocol appear robust despite several 

methodological distinctions between tasks. Future research will be important to assess 

whether results are consistent across other versions of nonsymbolic comparison tasks. 

Moreover, the results of this study are limited to dot comparison tasks; further research could 

use this method to investigate whether numerical information is predictive of performance on 

other tasks designed to measure ANS acuity, such as nonsymbolic estimation and 

nonsymbolic arithmetic tasks.  

 In sum, we have shown that for a significant number of participants, there is no need 

to hypothesise that the ANS exists to explain their performance on dot comparison tasks. To 

be precise, for the majority of children and some adults, numerical processing did not explain 

significant additional variance in dot comparison task performance over and above visual cue 

processing. This finding has implications for research that has shown a correlation between 

nonsymbolic dot comparison performance and symbolic mathematical ability, as it appears 

likely that this relationship is not caused by the assumed mutual relationship with the ANS, 

especially for children. If psychologists are to continue to use nonsymbolic comparison tasks 

as a measure of ANS acuity in their research, analyses to evaluate whether participants are 

processing numerical information should be completed before conclusions are drawn, and 

other domain-general cognitive skills such as inhibition and visuospatial skills should be 

considered. This result, combined with recent research highlighting substantial issues 

concerning the reliability and validity of different dot comparison task methodologies (Inglis & 

Gilmore, 2014; Smets et al., 2015), suggests great care is required when using dot 

comparison tasks to investigate numerical cognition. 
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Figure 1. 

Mean accuracy scores for Gebuis and Reynvoet trials (G&R) and Panamath trials split by 

image congruency type, labeled as follows: Fully cong = convex-hull congruent, dot-size 

congruent; CH Cong = convex-hull congruent, dot-size incongruent; Dot Cong = convex-hull 

incongruent, dot-size congruent; Fully Incong = convex-hull incongruent, dot-size 

incongruent. Error bars represent standard deviations. 
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Figure 2. 

Change in pseudo-R2 values when numerical ratio was added to regression models 

individually predicting accuracy scores for children (top panel) and adults (bottom panel). 

Data from the Panamath trials were not included here. 

 

 

 
 

 

 

  



Table 1. 

Numerosity and visual cue information for the stimuli in each of the three studies, including 

the mean and the standard deviations of the ratios between the to-be-compared arrays in 

terms of numerosity, average dot size and convex hull size. All ratios are calculated larger 

value / smaller value for each cue to allow for comparison and log transformed. (G&R = 

Gebuis & Reynvoet). 

 Numerosity ratio Dot size ratio Convex hull ratio 

M SD M SD M SD 

Study 1 – G&R 0.13 0.06 0.63 0.14 0.24 0.07 

Study 2 – G&R 0.13 0.06 0.63 0.14 0.24 0.07 

Study 2 – Panamath 0.10 0.08 0.13 0.15 0.07 0.06 

Study 3 – G&R 0.13 0.08 0.61 0.15 0.23 0.08 

 

 

 

 

 

 

 

 

  



Table 2. 

The median pseudo-R2 values for step one and step two of the regression models. 

 

Gebuis and Reynvoet stimuli Panamath stimuli 

Children Adults Adults 

Step 1 Step 2 Step 1 Step 2 Step 1 Step 2 

Median 

pseudo-

R2 

Study 1 .347 .388 .344 .385 - - 

Study 2 - - .399 .449 .296 .343 

Study 3 .324 .359 .205 .368 - - 

Overall .337 .365 .357 .414 .296 .343 

 

 

 

 

  



Table 3. 

The median standardised beta weights when convex-hull ratio, dot-size ratio, and numerical 

were all added to the regression models (step two). (G&R = Gebuis & Reynvoet). 

 
G&R stimuli Panamath stimuli 

Children Adults Adults 

Convex Hull 

Study 1 .337 .361 - 

Study 2 - .494 .306 

Study 3 .399 .298 - 

Overall .355 .403 .306 

Dot size  

Study 1 .178 .138 - 

Study 2 - .040 -.086 

Study 3 .122 -.105 - 

Overall .168 .053 -.086 

Numerical 

Study 1 .140 .249 - 

Study 2 - .228 .292 

Study 3 .120 .317 - 

Overall .128 .247 .292 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. 
The median pseudo-R2 change when numerical ratio was added to the regression models and 

the percentage of participants for whom adding numerical ratio to the regression model 

accounted for significantly greater variance in accuracy scores, after controlling for visual 

cues, across all three studies. Data from the Panamath trials were not included here. 

 
Children Adults 

Median R2 change % sig Median R2 change % sig 

Study 1 0.017 27.5% 0.065 60.8% 

Study 2 - - 0.049 78.9% 

Study 3 0.013 36.4% 0.095 83.3% 

Overall 0.015 30.6% 0.055 71.7% 

 

 


